解:過點?$C$?作?$CE⊥AD$?交?$AD$?的延長線于點?$E$?
∵點?$D$?是?$BC$?的中點
∴?$BD=CD$?
又?$∠BAD=∠DEC=90°,$??$∠ADB=∠CDE$?
∴?$△ABD≌△ECD$?
∴?$AB=CE,$??$AD=DE,$??$∠B=∠DCE,$??$∠EAC=150°-90°=60°$?
設?$DE=AD=x,$?則?$EC=AE · tan 60°=2\sqrt 3x,$??$CD=\sqrt {DE^2+EC^2}=\sqrt {13}x$?
∴?$sinB=sin∠DCE=\frac {DE}{CD}=\frac {\sqrt {13}}{13}$?