證明:?$(1) $?∵ 四邊形?$ABCD$?是矩形,
∴?$ ∠B=90°. $?
∵?$ △AB_{1}E_{1}$?是?$△ABE$?旋轉(zhuǎn)所得的,
∴?$ AE=AE_{1},$??$∠AB_{1}E_{1}=∠ABE=∠B=90°. $?
∴?$ B_{1}$?是?$EE_{1}$?的中點.
∴?$ EB_{1}=\frac 12\ \mathrm {EE}1.$?
∵?$ M、$??$N$?分別是?$AE$?和?$AE_{1}$?的中點,
∴?$ MN//EB_{1},$??$\frac 12MN= EE_{1}. $?
∴?$ EB_{1}=MN. $?
∴ 四邊形?$MEB_{1}N$?是平行四邊形 .
?$(2)△AE_{1}F≌△CBE $?
理由:如圖,連接?$FC. $?
∵?$ EB_{1}=B_{1}E_{1}=E_{1}F,$?
∴?$S_{△AE_{1}F}=S_{△AEB_{1}}=S_{△AE_{1}B_{1}}=\frac 13\ \mathrm {S}_{△EAF}.$?
同理可得?$S_{△CB_{1}E}=\frac 13\ \mathrm {S}_{△FEC}.$?
∵?$ S_{△AE_{1}F}=S_{△CB_{1}E},$?
∴?$S_{△EAF}=S_{△FEC}. $?
∵?$ AF//EC,$?
∴?$ △AEF$?底邊?$AF$?上的高和?$△FEC$?底邊?$EC$?上的高相等.
∴?$ AF=EC. $?
∵?$ AF//EC $?
∴?$ ∠AFE_{1}=∠CEB_{1}.$?
在?$△AE_{1}F $?和?$△CB_{1}E$?中,
?$AF=CE,$?
?$∠AFE_{1}=∠CEB_{1},$?
?$FE_{1}=EB_{1},$?
∴?$ △AE_{1}F≌△CBE(\mathrm {SAS}).$?