證明:?$(1) $?∵ 四邊形?$ABCD$?和?$CEFG$?均為正方形,
∴?$ AD//CB,$??$EF//CG,$??$∠BCD=∠ECG=90°,$??$CE=EF,$??$AD=CD.$?
∴ 點(diǎn)?$B、$??$C、$??$G$?在同一條直線上.
∴?$ AD//EF. $?
∴?$ ∠NAM=∠EFM,$??$∠ANM=∠FEM. $?
∵ 點(diǎn)?$M$?是?$AF$?的中點(diǎn),
∴?$ AM=FM. $?
在?$△ANM$?和?$△FEM$?中,
?$\begin{cases}{ ∠NAM=∠EFM}\\{∠ANM=∠FEM.}\\{AM=FM}\end{cases}$?
∴?$ △ANM≌△FEM(\mathrm {AAS}). $?
∴?$ AN=EF,$??$NM=EM. $?
∴?$ AN=CE.$?
∴?$ AD-AN=CD-CE,$?即?$DN=DE. $?
∵?$ ∠ADE=90°,$?
∴?$ △DEN$?為等腰直角三角形.
∴?$ DM=\frac 12\ \mathrm {EN}=EM,$??$DM⊥EM .$?
?$(2)$?選擇題圖③ 如圖,?$∠DCE=90°,$?延長(zhǎng)?$EM$?交?$AB$?于點(diǎn)?$H,$?連接?$DH、$??$DE. $?
∵ 四邊形?$ABCD$?和?$CEFG$?均為正方形,
∴?$ ∠BAD=∠GCE=90°,$??$AB//CD,$??$CG//EF,$??$CE=EF,$??$AD=CD. $?
∴?$ ∠GCE+∠DCE=180°. $?
∴ 點(diǎn)?$D、$??$C、$??$G$?在同一條直線上,
∴?$AB//DG//EF. $?
∴?$∠AHE=∠MEF,$??$∠HAM=∠EFM. $?
∵?$ M$?是?$AF$?的中點(diǎn),
∴?$ AM=MF. $?
在?$△AMH$?和?$△FME$?中,
?$\begin{cases}{∠AHE=∠MEF}\\{∠HAM=∠EFM.}\\{AM=MF}\end{cases}$?
∴?$ △AMH≌△FME(\mathrm {AAS}). $?
∴?$ HM=EM,$??$AH=EF. $?
∴?$ AH=CE. $?
在?$△ADH$?和?$△CDE$?中
?$\begin{cases}{AD=CD}\\{∠BAD=∠DCE}\\{AH=CE}\end{cases}$?
∴?$ △ADH≌△CDE(\mathrm {SAS}). $?
∴?$ DH=DE,$??$∠ADH=∠CDE. $?
∴?$ ∠ADH+∠CDH=∠CDE+∠CDH=90°. $?
∴?$ ∠EDH=90°. $?
∴?$ △EDH$?為等腰直角三角形.
∴?$ DM=\frac 12\ \mathrm {EH}=EM,$??$DM⊥EM.$?