解:?$(1)$?∵?$cos 36°50'=0.8004,$??$cos 37°=0.7986,$??$cos A=0.8$?
∴?$36°50'< ∠A< 37°,$??$98°<∠ C< 98°10'$?
∴?$△ABC$?是鈍角三角形
?$ (2) $?如圖,?$BD$?是邊?$AC$?上的高,?$BD⊥AC,$??$BD=3,$?過點?$C$?作?$CE⊥AB,$?垂足為?$E$?
在?$Rt △ABD$?中,?$cos A=\frac {AD}{AB}=\frac {4}{5}$?
設(shè)?$AD=4k,$??$AB=5k$?
∴?$3^2+(4k)^2=(5k)^2,$??$k=1$?
∴?$AB=5,$??$AD=4$?
在?$Rt△ACE$?中,?$cosA=\frac {AE}{AC}=\frac {4}{5}$?
設(shè)?$AE=4a,$??$AC=5a$?
∴?$CE=\sqrt{(5a)^2-(4a)^2}=3a$?
又∵?$∠CBE=45°,$??$∠BEC=90°$?
∴?$BE=CE=3a$?
∵?$BE+AE=AB$?
∴?$3a+4a=5$?
∴?$a=\frac {5}{7}$?
∴?$BE=CE=\frac {15}{7}$?
∴?$BC=\frac {BE}{cos_{45}°}=\frac {15}{7} × \frac {2}{\sqrt 2}=\frac {15\sqrt{2}}{7}$?