解:?$(2)△ABC∽△A'B'C' ,$?理由:
如圖,過點(diǎn)?$D、$??$D'$?分別作?$DE//BC,$??$D'E'//B'C',$?
?$DE$?交?$AC$?于點(diǎn)?$E,$??$D'E'$?交?$A'C'$?于點(diǎn)?$E'$?
∵?$DE//BC$?
∴?$△ADE∽△ABC$?
∴?$\frac {AD}{AB}=\frac {DE}{BC}=\frac {AE}{AC}$?
同理可得,?$\frac {A'D'}{A'B'}=\frac {D'E'}{B'C'}=\frac {A'E'}{A'C'}$?
∵?$\frac {AD}{AB}=\frac {A'D'}{A'B'} $?
∴?$\frac {DE}{BC}= \frac {D'E'}{B'C'} $?
∴?$\frac {DE}{D'E'} =\frac {BC}{B'C'} $?
同理可得,?$\frac {AE}{AC}= \frac {A'E'}{A'C'}$?
∴?$\frac {AC-AE}{AC}= \frac {A'C'-A'E'}{A'C},$?即?$ \frac {EC}{AC}=\frac {E'C'}{A'C'}$?
∴?$\frac {EC}{E'C'}=\frac {AC}{A'C'}$?
∵?$\frac {CD}{C'D'}=\frac {AC}{A'C'}=\frac {BC}{B'C'}$?
∴?$\frac {CD}{C'D'}=\frac {DE}{D'E'}=\frac {EC}{E'C'}$?
∴?$ △DCE∽△D'C'E$?
∴?$∠CED=∠C'E'D'$?
∵?$DE//BC$?
∴?$∠CED+∠ACB=180°$?
同理可得,?$∠C'E'D'+∠A'C'B'=180°$?
∴?$∠ACB=∠A'C'B'$?
∵?$\frac {AC}{A'C'}=\frac {CB}{C'B'}$?
∴?$ △ABC∽△A'B'C'$?