解:?$(1) $?由題意知,?$k=\frac {6}{2}=3$?
即點?$P(6,$??$2)$?的“傾斜系數(shù)?$”k $?的值為?$3$?
?$(2)①a=2b$?或?$b=2a ,$?理由:
∵點?$P(a,$??$b)$?的“傾斜系數(shù)?$”k=2$?
∴?$\frac {a}=2$?或?$ \frac {a}=2,$?即?$a=2b$?或?$b=2a$?
∴?$a$?和?$b$?的數(shù)量關(guān)系為?$a=2b$?或?$b=2a$?
②由①知,?$a=2b$?或?$b=2a$?
∵?$a+b=3$?
∴?$\begin{cases}{a=1}\\{b=2}\end{cases},$?或?$\begin{cases}{a=2}\\{b=1}\end{cases}$?
∴?$OP=\sqrt{1^2+2^2}=\sqrt{5} $?
?$(3) $?由題意知,當(dāng)點?$P $?與點?$D$?重合,且?$k=\sqrt{3} $?時,?$a$?有最小臨界值
如圖①,連接?$OD,$?延長?$DA$?交?$x$?軸于點?$E$?
此時?$ \frac {a}=\sqrt{3},$?則?$ \frac {a+2}{a}=\sqrt{3}$?
解得?$a=\sqrt{3} +1$?
當(dāng)點?$P $?與點?$B$?重合,且?$k=\sqrt{3} $?時,?$a$?有最大臨界值
如圖②,連接?$OB,$?延長?$CB$?交?$x$?軸于點?$F$?
此時?$ \frac {a}=\sqrt{3},$?則?$\frac a{a-2}=\sqrt{3}$?
解得?$a=3+ \sqrt{3}$?
綜上所述,若點?$P $?的“傾斜系數(shù)?$”k< \sqrt{3},$?則?$ \sqrt{3} +1< a< 3+ \sqrt{3}$?