解:?$(1)②$?∵若點?$C$?在直線?$x=4$?上,
且點?$A、$??$C$?的“相關(guān)矩形”為正方形
∴?$C(4,$??$2)$?或?$(4,$??$-2)$?
設(shè)直線?$AC$?的表達式為?$y=kx+b$?
將?$(2,$??$0)、$??$(4,$??$2)$?代入,解得?$k=1,$??$b=-2$?
∴?$y=x-2$?
將?$(2,$??$0)、$??$(4,$??$-2)$?代入,解得?$k=-1,$??$b=2$?
∴?$y=-x+2$?
∴直線?$AC$?的表達式為?$y=x-2$?或?$y=-x+2$?
?$(2)$?如圖,點?$P $?的坐標(biāo)為?$(3,$??$-4),$?點?$Q $?的坐標(biāo)為?$(6,$??$-2)$?
設(shè)點?$P、$??$Q $?的“相關(guān)矩形”為矩形?$MPNQ$?
則?$M(3,$??$-2),$??$N(6,$??$-4)$?
當(dāng)函數(shù)?$y=\frac {k}{x} $?的圖像過點?$M$?時,?$k=-6$?
當(dāng)函數(shù)?$y=\frac {k}{x} $?的圖像過點?$N$?時,?$k=-24$?
∴若使函數(shù)?$y=\frac {k}{x} $?的圖像與點?$P、$??$Q $?
的“相關(guān)矩形”有兩個公共點,則?$-24< k< -6$?