解:?$(1)$?∵拋物線的對稱軸為直線?$x=3,$??$AB=4$?
∴?$A(1,$??$0),$??$B(5,$??$0)$?
將?$A(1,$??$0)$?代入直線?$y=kx-1,$?得?$k-1=0,$?解得?$k=1$?
∴直線?$AD$?的表達式為?$y=x-1$?
將?$A(1,$??$0)、$??$B(5,$??$0)$?代入?$y=ax^2+bx+5$?
得?$\begin{cases}{a+b+5=0}\\{25a+5b+5=0}\end{cases},$?解得?$\begin{cases}{a=1}\\{b=-6}\end{cases}$?
∴拋物線的表達式為?$y=x^2-6x+5 $?
?$(2)$?存在點?$M,$?使得?$△ADM$?是以?$AD$?為直角邊的直角三角形
∵直線?$AD$?的表達式為?$y=x-1,$?拋物線的對稱軸直線?$x=3$?與?$x$?軸交于點?$E$?
∴當?$x=3$?時,?$y=x-1=2$?
∴?$D(3,$??$2)$?
①當?$∠DAM=90°$?時,設直線?$AM$?的表達式為?$y=-x+c$?
將點?$A$?的坐標代入,得?$-1+c=0,$?解得?$c=1$?
∴直線?$AM$?的表達式為?$y=-x+1$?
解方程組?$\begin{cases}{y=-x+1}\\{y=x^2-6x+5}\end{cases},$?解得?$\begin{cases}{x=1}\\{y=0}\end{cases},$?或?$\begin{cases}{x=4}\\{y=-3}\end{cases}$?
∴點?$M$?的坐標為?$(4,$??$-3)$?
② 當?$∠ADM=90°$?時,設直線?$DM$?的表達式為?$y=-x+d$?
將?$D(3,$??$2)$?代入,得?$-3+d=2,$?解得?$d=5$?
∴直線?$DM$?的表達式為?$y=-x+5$?
解方程組?$\begin{cases}{y=-x+5}\\{y=x^2-6x+5}\end{cases},$?解 得?$\begin{cases}{x=0}\\{y=5}\end{cases},$?或?$\begin{cases}{x=5}\\{ y=0}\end{cases}$?
∴點?$M$?的坐標為?$(0,$??$5)$?或?$(5,$??$0)$?
綜上所述,點?$M$?的坐標為?$(4,$??$-3)$?或?$(0,$??$5)$?或?$(5,$??$0) $?
?$(3)$?如圖,在?$AB$?上取點?$F,$?使?$BF=1,$?連接?$CF、$??$BP、$??$FP$?
∵?$PB=2$?
∴?$\frac {BF}{PB} =\frac {1}{2} $?
∵?$\frac {PB}{AB}= \frac {2}{4}= \frac {1}{2} $?
∴?$\frac {BF}{PB} =\frac {PB}{AB}$?
又∵?$∠PBF=∠ABP$?
∴?$△PBF∽△ABP$?
∴?$\frac {PF}{PA}=\frac {BF}{PB}=\frac {1}{2},$?即?$PF=\frac {1}{2}\ \mathrm {PA}$?
∴?$PC+ \frac {1}{2}\ \mathrm {PA}=PC+PF≥CF$?
∴當?$C、$??$P、$??$F $?三點共線時,?$PC+ \frac {1}{2}\ \mathrm {PA}$?的值最小,即為線段?$CF $?的長
∵?$OC=5,$??$OF=OB-1=5-1=4$?
∴?$CF=\sqrt{OC^2+OF^2}=\sqrt{5^2+4^2}=\sqrt{41}$?
∴?$PC+ \frac {1}{2}\ \mathrm {PA}$?的最小值為?$ \sqrt{41}$?