解:?$(1) $?在?$△ABC$?中,?$AB=AC=1,$??$∠BAC=30°$?
∴?$∠ABC=∠ACB=75°$?
∴?$∠ABD=∠ACE=105°$?
又∵?$∠DAE=105°,$??$∠BAC=30°$?
∴?$∠DAB+∠CAE=75°$?
又∵?$∠DAB+∠ADB=∠ABC=75°$?
∴?$∠CAE=∠ADB$?
∴?$△ADB∽△EAC$?
∴?$\frac {AB}{EC} =\frac {DB}{AC} ,$?即?$\frac 1{y}=\frac {x}{1}$?
∴?$y= \frac {1}{x}$?
?$(2) $?當α、β滿足?$β=90°+ \frac {α}{2} $?時,函數(shù)表達式?$y=\frac {1}{x} $?仍然成立 ,理由:
∵?$∠DAB+∠CAE=β-α,$??$∠DAB+∠ADB=∠ABC=\frac {1}{2} (180°-α)=90°- \frac {α}{2},$?
若?$90°- \frac {α}{2}=β-α($?即?$β=90°+\frac {α}{2} ),$?則?$∠CAE=∠ADB$?
又∵?$∠ABD=∠ACE$?
∴?$△ADB∽△EAC$?仍然成立
從而?$(1)$?中函數(shù)表達式?$y=\frac {1}{x} $?成立