解:??$(1)$??當(dāng)??$22≤x≤30$??時(shí),設(shè)函數(shù)表達(dá)式為??$y=kx+b$??
將??$(22,$????$48),$????$(30,$????$40)$??代入解析式
得??$\begin{cases}{22k+b=48}\\{30k+b=40}\end{cases},$??解得??$\begin{cases}{k=-1}\\{b=70}\end{cases}$??
∴函數(shù)表達(dá)式為:??$y=-x+70$??
當(dāng)??$30<x≤45$??時(shí),設(shè)函數(shù)表達(dá)式為:??$y=mx+n$??
將??$(30,$????$40),$????$(45,$????$10)$??代入解析式
得??$\begin{cases}{30m+n=40}\\{45m+n=10}\end{cases},$??解得??$\begin{cases}{m=-2}\\{n=100}\end{cases}$??
∴函數(shù)表達(dá)式為:??$y=-2x+100$??
綜上,??$y$??與??$x$??的函數(shù)表達(dá)式為:??$y=\begin{cases}{-x+70(22≤x≤30)}\\{-2x+100(30<x≤45)}\end{cases}$??
??$(2)$??設(shè)利潤(rùn)為??$w$??元
當(dāng)??$22≤x≤30$??時(shí),??$w=(x-20)(-x+70)=-x^2+90x-1400=-(x-45)^2+625$??
∵在??$22≤x≤30$??范圍內(nèi),??$w$??隨著??$x$??的增大而增大
∴當(dāng)??$x=30$??時(shí),??$w$??取得最大值為??$400$??
當(dāng)??$30<x≤45$??時(shí),??$w=(x-20)(-2x+100)=-2x^2+140x-2000=-2(x-35)^2+450$??
當(dāng)??$x=35$??時(shí),??$w$??取得最大值為??$450$??
∵??$450>400$??
∴當(dāng)銷售價(jià)格為??$35$??元??$/\ \mathrm {kg}$??時(shí),利潤(rùn)最大為??$450$??元