解:?$(1)$?設(shè)經(jīng)過?$t $?秒,?$△PBQ$?的面積為?$5\ \mathrm {cm^2}$?
則?$AP=t\ \mathrm {cm},$??$BP=AB-AP=(6-t)\ \mathrm {cm},$??$BQ=2t\ \mathrm {cm}$?
?$S_{△PBQ}=\frac 12×BP×BQ=\frac 12×(6-t)×2t=5\ \mathrm {cm^2}$?
∴?$t(6-t)=5$?
?$t_{1}=1,$??$t_{2}=5$?
當?$t=5$?時,?$BQ=10\ \mathrm {cm},$?此時?$BQ>BC,$?不合題意,舍去
∴經(jīng)過?$1$?秒,?$△PBQ$?的面積為?$5\ \mathrm {cm^2}$?
?$(2)y=\frac 12(6-t)×2t=t(6-t)=-t^2+6t=-(t-3)^2+9(0≤t≤4)$?
∴當?$t=3$?時,?$△PBQ$?的面積最大
?$(3)$?設(shè)移動?$t$?秒,?$PQ//AB,$?此時點?$P$?在?$BC$?邊上,點?$Q$?在?$AC$?邊上
∴此時?$BP=(t-6)\ \mathrm {cm},$??$CQ=(2t-8)\ \mathrm {cm}$?
則?$CP=BC-BP=8-(t-6)=(14-t)\ \mathrm {cm}$?
若?$PQ//AB$?
則?$△CPQ∽△CBA$?
∴?$\frac {CP}{CB}=\frac {CQ}{CA},$?即?$\frac {14-t}{8}=\frac {2t-8}{10}$?
?$10(14-t)=8(2t-8) $?
∴?$t=\frac {102}{13}\ \mathrm {s}$?
∴移動?$\frac {102}{13}$?秒時,?$PQ//AB$?