解:?$(1)S_{△ABC}=S_{四邊形AFBD}$?
由題意可得,?$AD//EC,$??$AD=CF$?
故?$S_{△ACF}=S_{△ADF}=S_{△ABD}$?
∵?$S_{△ABC}=S_{△ACF}+S_{△AFB},$??$S_{四邊形AFBD}=S_{△AFB}+S_{△ABD}$?
∴?$S_{△ABC}=S_{四邊形AFBD}$?
?$(2)△ABC$?為等腰直角三角形,即?$AB=AC,$??$∠BAC=90°$?
∵?$F $?為?$BC$?的中點
∴?$CF=BF$?
∵?$CF=AD$?
∴?$AD=BF$?
又∵?$AD//BF$?
∴四邊形?$AFBD$?為平行四邊形
∵?$AB=AC,$??$F $?為?$BC$?的中點
∴?$AF⊥BC$?
∴?$?AFBD$?為矩形
∵?$∠BAC=90°,$??$F $?為?$BC$?的中點
∴?$AF=\frac {1}{2}\ \mathrm {BC}=BF$?
∴矩形?$AFBD$?為正方形
?$ (3)$?如圖,由?$(2)$?知,?$△ABC$?為等腰直角三角形,?$AF⊥BC$?
設?$CF=k,$?則?$GF=EF=CB=2k$?
由勾股定理得?$CG=\sqrt{5}k,$??$sin ∠CGF=\frac {CF}{CG}= \frac {k}{\sqrt 5k} =\frac {\sqrt{5}}{5}$?