解?$: (1)$?設(shè)拋物線?${C}_1$?的函數(shù)表達(dá)式為?$y= ax2+ bx +c$?
由題意得,
?$\begin{cases}{0=16a-4b+c}\\{-\dfrac {2a}=-1.5}\\{6=a-b+c} \end{cases}$?
解得?$a=-1,b=-3,c=4$?
所以拋物線?${C}_1$?的函數(shù)表達(dá)式為?$y= -x2- 3x +4$?
?$(2)$?拋物線?${C}_2$?的圖像如圖所示,
設(shè)拋物線?${C}_2$?的函數(shù)表達(dá)式為?$y= dx2+ex+f ,$?
則拋物線?${C}_2$?與?$x$?軸交點(diǎn)為?$(4 , 0) ,$?對稱軸所在直線為?$x = 1.5, $?
且拋物線過點(diǎn)?$(1.-6)。$?
由題意得,
?$\begin{cases}{16d+4e+f=0 }\\{-\dfrac {c}{2d}=1.5}\\{d+e+f=-6} \end{cases}$?
所以?$d=1,e=-3,f=-4$?
拋物線?${C}_2$?的函數(shù)表達(dá)式為?$y=x2-3x-4$?
?$(3)$?由題意得,?$-x2-3x+4=x2-3x-4,$?
解得,?$x=±2$?
所以點(diǎn)?$A$?橫坐標(biāo)為?$-2 ,$?點(diǎn)?$B$?橫坐標(biāo)為?$2 $?
設(shè)點(diǎn)?$P$?的橫坐標(biāo)為?$t ,$?則點(diǎn)?$P$?坐標(biāo)為?$(t,-t2 - 3t +4)$?
因?yàn)?$PQ//y$?軸,點(diǎn)?$P$?的橫坐標(biāo)為?$t ,$?
所以點(diǎn)?$Q$?的橫坐標(biāo)也為?$t$?
因?yàn)辄c(diǎn)?$Q$?在拋物線?${C}_2$?上,
所以點(diǎn)?$Q_{坐標(biāo)} $?為?$(t,t2- 3t- 4)$?
所以?$PQ=(-t2-3t+4)- (t2- 3t-4)=-2t2+ 8$?
因?yàn)辄c(diǎn)?$P{位于} $?點(diǎn)?$A$?和點(diǎn)?$B$?之間,
所以t的取值范圍為- 2<t<2.
所以當(dāng)t= 0時(shí), PQ取最大值,最大值為8