解:?$(1)$?如圖所示:點(diǎn)?$E$?即為所求.
?$(2)4$?個(gè).理由如下:
連接?$AP,$??$BP.$?
?$∵△ABP$?為直角三角形,
?$∴∠APB=90°,$?
?$∴∠DPA+∠CPB=90°.$?
?$∵∠DAP+APD=90°,$?
?$∴∠DAP=CPB.$?
又?$∵∠D=∠C,$?
?$∴△DPA∽△BCP,$?
?$∴\frac {DP}{AD}=\frac {CB}{PC}.$?
設(shè)?$DP=x,$?則?$PC=3-x,$?則?$\frac {x}{1}=\frac {1}{3-x},$?
解得:?$x=\frac {3±\sqrt{5}}{2},$?
?$∴DP=\frac {3±\sqrt{5}}{2}.$?
?$∵D,$??$C$?也是?$A,$??$B$?的勾股點(diǎn),點(diǎn)?$P$?的位置有兩個(gè),
∴共有?$4$?個(gè)勾股點(diǎn).
?$(3)①$?如圖所示:當(dāng)?$t=4$?時(shí),?$DP=4,$??$AE=4,$??$PE=AD=4,$?
?$∵DM=8,$??$AN=5,$?
?$∴PM=4,$??$EN=1.$?
過(guò)點(diǎn)?$N$?作?$NG⊥PM$?于點(diǎn)?$G,$?則?$PG=EN=1,$?
則?$tan∠PMN=\frac {NG}{GM}=\frac {4}{4-1}=\frac {4}{3}.$?
當(dāng)?$∠NMH_1=90°$?時(shí),則?$∠PH_1M+∠H_1MP=∠H_1MP+∠NMP=90°,$?
?$∴∠PH_1M=∠NMP,$?
?$∴tan∠PH_1M=\frac {PM}{P{H_1}_1}=tan∠NMP=\frac {4}{3},$?
?$∴PH_1=\frac {3}{4}×4=3;$?
當(dāng)?$∠MNH_3=90°$?時(shí),可得?$H_1M∥H_3N,$?
?$∴∠NH_3E=∠MH_1P,$?
?$∴tan∠NH_3E=tan∠PH_1M=\frac {4}{3},$?
?$∴\frac {EN}{{H}_3E}=\frac {1}{{H}_3E}=\frac {4}{3},$?
?$∴H_3E=\frac {3}{4},$?
?$∴PH_3=4-\frac {3}{4}=\frac {13}{4}.$?
當(dāng)?$∠PH_2N=90°$?時(shí),設(shè)?$PH_2=x,$?則?$H_2E=4-x,$?
?$∵∠PMH_2+∠PH_2M=90°,$??$∠PH_2M+∠EH_2N=90°,$?
?$∴∠PMH_2=∠NH_2E.$?
?$∵∠MPE=∠PEN=90°,$?
?$∴△PMH_2∽△EH_2N,$?
?$∴\frac {P{H}_2}{EN}=\frac {PM}{E{H}_2},$?
即:?$\frac {x}{1}=\frac {4}{4-x},$?
解得:?$x=2,$?經(jīng)檢驗(yàn)適合題意,
?$∴PH_2=2.$?
綜上:?$PH$?為?$2$?或?$3$?或?$\frac {13}{4}.$?
②由①可知,當(dāng)?$t=4$?時(shí),?$MN=5,$??$PH_2=2,$?
?$∴H_2$?是?$PE$?的中點(diǎn),
設(shè)以?$MN$?為直徑的圓?$O,$?則?$OH_2$?是梯形?$PMNE$?的中位線(xiàn),
?$∴OH_2=\frac {1}{2}(PM+EN)=\frac {1}{2}×(1+4)=2.5=\frac {1}{2}MN,$?且?$OH_2⊥PE,$?
∴圓?$O$?與?$PE$?相切,
?$∴PE$?與圓?$O$?只有一個(gè)交點(diǎn),
結(jié)合當(dāng)?$M,$??$N$?為直角頂點(diǎn)時(shí),得到兩個(gè)直角三角形,
∴此時(shí)共有?$3$?個(gè)勾股點(diǎn).
當(dāng)?$0≤t<4$?時(shí),?$PE$?與圓?$O$?相離,?$PE$?與圓?$O$?沒(méi)有交點(diǎn),
此時(shí),只有當(dāng)?$M,$??$N$?為直角頂點(diǎn)時(shí),得到兩個(gè)直角三角形,
∴此時(shí)有兩個(gè)勾股點(diǎn).
當(dāng)?$t=5$?或?$t=8$?時(shí),?$PE$?通過(guò)?$N$?或?$M$?點(diǎn),此時(shí)有兩個(gè)勾股點(diǎn),
當(dāng)?$4≤t<5$?或?$5<t<8$?時(shí),直線(xiàn)?$PE$?與圓?$O$?有兩個(gè)交點(diǎn),
結(jié)合當(dāng)?$M,$??$N$?為直角頂點(diǎn)時(shí),得到兩個(gè)直角三角形,
共有?$4$?個(gè)勾股點(diǎn).
綜上:當(dāng)?$0≤t<4$?時(shí)或?$t=5$?或?$t=8$?時(shí),有?$2$?個(gè)勾股點(diǎn),
當(dāng)?$t=4$?時(shí),有?$3$?個(gè)勾股點(diǎn),
當(dāng)?$4<t<5$?時(shí)或?$5<t<8$?時(shí),有?$4$?個(gè)勾股點(diǎn),
當(dāng)?$4<t<5$?時(shí),有?$4$?個(gè)勾股點(diǎn),當(dāng)?$t=5$?時(shí),有?$2$?個(gè)勾股點(diǎn).