解:?$(1)$?如圖所示
?$(2)∠A=∠A,$??$△ABC∽△A'B'C'$?
在?$AB$?上截取?$AB''= A'B',$?過點(diǎn)?$B''$?作?$B''C''//BC,$?交?$AC$?于點(diǎn)?$C''$?
在?$△ABC$?和?$△AB''C''$?中
∵?$B''C''//BC$?
∴?$△ABC \sim △AB''C''$?
∴?$\frac {AB}{AB''}=\frac {BC}{B''C''}=\frac {CA}{C''A}$?
∵?$\frac {AB}{A'B'}=\frac {BC}{B'C'}=\frac {CA}{C'A'},$??$AB''= A'B'$?
∴?$B''C''= B'C',$??$C''A= C'A',$??$△AB''C''≌△A'B'C'$?
∴?$△ABC \sim △A'B'C'$?
?$(3)$?假設(shè)?$AB>A'B',$?在?$AB$?上截取?$AB''= A'B',$?過點(diǎn)?$B''$?作?$B''C''//BC,$?交?$AC$?于點(diǎn)?$C''$?
在?$△ABC$?和?$△AB''C''$?中
∵?$B''C''//BC$?
∴?$△ABC \sim △AB''C''$?
∴?$\frac {AB}{AB''}=\frac {BC}{B''C''}=\frac {CA}{C''A}$?
∵?$\frac {AB}{A'B'}=\frac {BC}{B'C'}=\frac {CA}{C'A'},$??$AB''= A'B'$?
∴?$B''C''= B'C',$??$C''A= C'A',$??$△AB''C''≌△A'B'C'$?
∴?$△ABC \sim △A'B'C'$?