?$解:(1)如圖 ,過點(diǎn)C作CF⊥DE于點(diǎn)F ,$?
?$因?yàn)镃D=CE=5\ \mathrm {cm}, ∠DCE=40° ,$?
?$所以∠DCF=∠ECF=20° , DF=EF=\frac {1}{2}DE,$?
?$所以在Rt△DFC中, sin_{20}°=\frac {DF}{CD}=\frac {DF}{5}≈0.34,$?
?$所以DF=1.7\ \mathrm {cm}$?
?$所以DE=2DF=3.4\ \mathrm {cm}$?
?$(2)如圖,連接AB ,過點(diǎn)D作DG⊥AB于點(diǎn)G ,過點(diǎn)E作EH⊥AB于點(diǎn)H ,$?
?$所以∠AGD=90° ,$?
?$由題意可得: CF垂直平分AB,$?
?$所以DG∥CF ,$?
?$所以∠GDC=∠DCF=20° ,$?
?$因?yàn)锳D⊥CD ,$?
?$所以∠A+∠ADG=∠GDC+∠ADG=90° ,$?
?$所以∠A=∠GDC=20°,$?
?$所以在Rt△AGD中, AD=10\ \mathrm {cm}, cos_{20}°=\frac {AG}{AD}=\frac {AG}{10}≈0.94,$?
?$所以AG=9.4 ,$?
?$同理可得: HB=9.4 ,$?
?$所以AB=AG+GH+HB=AG+DE+HB=9.4+3.4+9.4=22.2\ \mathrm {cm}.$?
?$答:點(diǎn)A. B之間的距離為22.2\ \mathrm {cm}.$?