解:??$-\frac {1}{2}x2-4x- 6= 0$??的解為??$x_{1}= -6,$????$ x_{2}= -2$??
??$x2-6x+9=0$??的解為??$x_{1} =x_{2}= 3$??
??$x2-2x+3=0$??無解
??$y=-\frac {1}{2}x2- 4x- 6$??與??$x$??軸的公共點(diǎn)為??$(-6,$????$ 0)、$????$ (-2,$????$ 0)$??
??$y=x2-6x+9$??與??$x$??軸的公共點(diǎn)為??$(3 ,$????$ 0)$??
??$y=x2-2x+3$??與??$x$??軸無公共點(diǎn)
二次函數(shù)與??$x$??軸有公共點(diǎn),則公共點(diǎn)的橫坐標(biāo)就是方程的根;
二次函數(shù)與??$x$??軸無公共點(diǎn),則方程無解。