3. 設(shè)甲數(shù)是$x$,乙數(shù)是$y$.
(1)用代數(shù)式表示:
①甲、乙兩數(shù)和的立方;
②甲、乙兩數(shù)的立方和.
(2)當$x= -2$,$y= -1$時,計算(1)的值.
答案:(1)①$(x+y)^{3}$;②$x^{3}+y^{3}$.(2)①$-27$;②$-9$.
解析:
(1)①$(x+y)^{3}$;②$x^{3}+y^{3}$
(2)①當$x = -2$,$y = -1$時,$(x+y)^{3}=(-2 + (-1))^{3}=(-3)^{3}=-27$;②當$x = -2$,$y = -1$時,$x^{3}+y^{3}=(-2)^{3}+(-1)^{3}=-8 + (-1)=-9$
4. 已知$a$是2的相反數(shù),$b$是2的倒數(shù),則
(1)$a= $
$-2$
,$b= $
$\frac{1}{2}$
;
(2)求代數(shù)式$a^{2}b-ab$的值.
3
答案:(1)$-2\frac{1}{2}$;(2)3.
解析:
(1)$-2$,$\frac{1}{2}$;
(2)$a^{2}b - ab = (-2)^{2} × \frac{1}{2} - (-2) × \frac{1}{2} = 4 × \frac{1}{2} + 1 = 2 + 1 = 3$