20.(6分)已知多項式$2x^{3}-4x^{2}-1$除以一個多項式A,得商為2x,余式為$x-1$,求這個多項式A.
答案:解:由題意得 A = [2x3 - 4x2 - 1 - (x - 1)] ÷ (2x) = x2 - 2x - 1/2.
解析:
解:由題意得,多項式A為:
$\begin{aligned}A&=[(2x^{3}-4x^{2}-1)-(x-1)]÷(2x)\\&=(2x^{3}-4x^{2}-1 - x + 1)÷(2x)\\&=(2x^{3}-4x^{2}-x)÷(2x)\\&=x^{2}-2x-\frac{1}{2}\end{aligned}$
答:多項式A為$x^{2}-2x-\frac{1}{2}$。
21.(10分)(2023·蘇州工業(yè)園區(qū)月考)已知$(a^{x})^{y}= a^{6},(a^{x})^{2}÷a^{y}= a^{3}$.
(1)求$xy和2x-y$的值;
(2)求$4x^{2}+y^{2}$的值.
答案:(1) ∵ (a?)? = a?, (a?)2 ÷ a? = a3, ∴ a?? = a?, a2??? = a3, ∴ xy = 6, 2x - y = 3. (2) 由(1)得 xy = 6, 2x - y = 3, ∴ 4x2 + y2 = (2x - y)2 + 4xy = 32 + 4×6 = 9 + 24 = 33.
22.(8分)觀察下列關于正整數(shù)的等式:
$3^{2}-4×1^{2}= 5$; ①
$5^{2}-4×2^{2}= 9$; ②
$7^{2}-4×3^{2}= 13$; ③
……
根據(jù)上述規(guī)律解決下列問題:
(1)完成第4個等式:$9^{2}-4×($
4
$)^{2}= ($
17
$)$;
(2)寫出你猜想的第n個等式(用含n的式子表示),并驗證其正確性.
解: (2n + 1)2 - 4n2 = 4n + 1. 驗證: (2n + 1)2 - 4n2 = 4n2 + 4n + 1 - 4n2 = 4n + 1.
答案:(1) 4 17;(2) 解: (2n + 1)2 - 4n2 = 4n + 1. 驗證: (2n + 1)2 - 4n2 = 4n2 + 4n + 1 - 4n2 = 4n + 1.