5. (2024 春·邗江期末) 如圖,點(diǎn)$D$,$E在\triangle ABC的邊BC$上,$AD = AE$,$BD = CE$. 求證:$AB = AC$.

答案:證明:如答圖,過(guò)點(diǎn)A作AF⊥BC于點(diǎn)F.
∵AD = AE,
∴DF = EF;
∵BD = CE,
∴BD + DF = CE + EF即BF = CF.
∵AF⊥BC,
∴AB = AC;

6. 如圖,在$\triangle ABC$中,$AC = 2AB$,$AD平分\angle BAC交BC于點(diǎn)D$,$E是AD$上一點(diǎn),連接$BE$,$EC$,且$EA = EC$. 求證:$EB \perp AB$.

答案:證明:如答圖,作EF⊥AC于點(diǎn)F.
∵EA = EC,
∴AF = FC = $\frac{1}{2}$AC;
∵AC = 2AB,
∴AF = AB.
∵AD平分∠BAC,
∴∠BAD = ∠CAD.
在△BAE和△FAE中,{AB = AF,∠BAE = ∠FAE,AE = AE}
∴△BAE≌△FAE(SAS),
∴∠ABE = ∠AFE = 90°,
∴EB⊥AB.
7. 小明遇到這樣一個(gè)問(wèn)題:
如圖①,在$\triangle ABC$中,$\angle ACB = 90^{\circ}$,點(diǎn)$D在AB$上,且$BD = BC$,求證:$\angle ABC = 2\angle ACD$.
小明發(fā)現(xiàn),除了直接用角度計(jì)算的方法外,還可以用下面的方法:如圖②,作$BE \perp CD$,垂足為$E$,證明$\angle ABC = 2\angle ACD$.
請(qǐng)從以上兩種方法中任選一種,加以證明.

答案:證明:(方法1)
∵∠ACB = 90°,
∴∠BCD = 90°?∠ACD.又
∵BC = BD,
∴∠BCD = ∠BDC,
∴∠ABC = 180°?2∠BCD = 180°?2(90°?∠ACD)=2∠ACD.
(方法2)
∵∠ACB = 90°,
∴∠ACD + ∠BCE = 90°,∠CBE + ∠BCE = 90°,
∴∠ACD = ∠CBE;
又
∵BC = BD,BE⊥CD,
∴∠ABC = 2∠CBE,
∴∠ABC = 2∠ACD.