1.(2024 秋·柯橋區(qū)期中)算式$\frac {3}{8}×37×\frac {8}{3}= 37×(\frac {3}{8}×\frac {8}{3})$中運(yùn)用了(
D
)
A.乘法交換律
B.乘法結(jié)合律
C.乘法分配律
D.乘法交換律和乘法結(jié)合律
答案:D
2.(2024 秋·南海區(qū)月考)利用乘法分配律計(jì)算$(-100\frac {98}{99})×99$時,下列變形正確的是(
C
)
A.$(100-\frac {1}{99})×99$
B.$-(100-\frac {98}{99})×99$
C.$-(100+\frac {98}{99})×99$
D.$(100-\frac {98}{99})×99$
答案:C
解析:
$(-100\frac{98}{99})×99=-(100+\frac{98}{99})×99$,故選C。
3.計(jì)算:(1)$(-9\frac {5}{6})×12=$
-118
;(2)$24×(\frac {1}{3}+\frac {1}{4}-\frac {1}{6})=$
10
.
答案:(1)-118 (2)10
解析:
(1)原式$=(-10+\frac{1}{6})×12$
$=-10×12+\frac{1}{6}×12$
$=-120 + 2$
$=-118$
(2)原式$=24×\frac{1}{3}+24×\frac{1}{4}-24×\frac{1}{6}$
$=8 + 6 - 4$
$=10$
4.計(jì)算:
(1)$(-5)×19×(-2)$;
(2)$(-8)×(-\frac {4}{3})×(-1.25)×\frac {5}{4}$;
(3)$(-\frac {1}{2}-\frac {1}{3}+\frac {3}{4}-\frac {4}{5})×(-60)$;
(4)$-\frac {3}{4}×(8-1\frac {1}{3}-\frac {14}{15})$。
答案:解:(1)原式=(-5)×(-2)×19=190.
(2)原式=-8×1.25×$\frac{4}{3}$×$\frac{5}{4}$=-$\frac{50}{3}$.
(3)原式=30+20-45+48=53.
(4)原式=-6+1+0.7=-4.3.
5.(2024 秋·新吳區(qū)期中)觀察如圖,它的計(jì)算過程可以解釋______這一運(yùn)算規(guī)律.(
D
)
A.加法交換律
B.乘法結(jié)合律
C.乘法交換律
D.乘法分配律
答案:D
6.計(jì)算:$(\frac {1}{100}-1)×(\frac {1}{99}-1)×(\frac {1}{98}-1)×... ×(\frac {1}{3}-1)×(\frac {1}{2}-1)=$
-$\frac{1}{100}$
.
答案:-$\frac{1}{100}$
解析:
$(\frac{1}{100}-1)×(\frac{1}{99}-1)×(\frac{1}{98}-1)×...×(\frac{1}{3}-1)×(\frac{1}{2}-1)$
$=(-\frac{99}{100})×(-\frac{98}{99})×(-\frac{97}{98})×...×(-\frac{2}{3})×(-\frac{1}{2})$
$=(-1)^{99}×\frac{99}{100}×\frac{98}{99}×\frac{97}{98}×...×\frac{2}{3}×\frac{1}{2}$
$=-1×\frac{1}{100}$
$=-\frac{1}{100}$
7.化繁為簡是數(shù)學(xué)中常用的思想方法.用簡便方法計(jì)算$(-\frac {3}{2})×(-\frac {11}{15})-\frac {3}{2}×(-\frac {13}{15})-\frac {3}{2}×(-\frac {14}{15})$時,用運(yùn)算律對題目進(jìn)行變形,使運(yùn)算量減小,達(dá)到簡化運(yùn)算的目的.請將過程補(bǔ)充完整:原式$=(-\frac {3}{2})×[(-\frac {11}{15})+(-\frac {13}{15})+$
$(-\frac{14}{15})$
]$=$
$(-\frac{3}{2})×(-\frac{38}{15})$
$=$
$\frac{19}{5}$
.
答案:$(-\frac{14}{15})$ $(-\frac{3}{2})×(-\frac{38}{15})$ $\frac{19}{5}$