9.(2025·上海期末)下面是樂(lè)樂(lè)家10月的全部收支情況:媽媽領(lǐng)工資8 100元,繳納水電煤共280.8元,為樂(lè)樂(lè)買(mǎi)衣服用去120元,全家去游樂(lè)場(chǎng)用去600元,爸爸領(lǐng)工資10 300元,媽媽買(mǎi)衣服用去230元,爸爸加油用去1 200元,還房貸用去3 500元,為爺爺過(guò)生日用去2 300元,本月伙食費(fèi)合計(jì)用去2 699.2元.樂(lè)樂(lè)家本月的結(jié)余為_(kāi)___元.
7470
答案:7470 解析:$8100 + 10300 - 280.8 - 120 - 600 - 230 - 1200 - 3500 - 2300 - 2699.2 = 7470$(元),所以樂(lè)樂(lè)家本月的結(jié)余為 7470 元.
解析:
解:$8100 + 10300 - 280.8 - 120 - 600 - 230 - 1200 - 3500 - 2300 - 2699.2$
$=18400 - (280.8 + 2699.2) - (120 + 600 + 230 + 1200 + 3500 + 2300)$
$=18400 - 2980 - 7950$
$=15420 - 7950$
$=7470$
7470
10.(2025·泰州校級(jí)月考)某特技飛行隊(duì)在名勝風(fēng)景旅游區(qū)進(jìn)行特技表演,其中一架飛機(jī)起飛后的高度變化如表:
|高度變化|記作|
|上升4.5km|+4.5km|
|下降3.2km|-3.2km|
|上升1.1km|+1.1km|
|下降1.4km|-1.4km|
(1)此時(shí)這架飛機(jī)比起飛點(diǎn)高了多少千米?
(2)如果飛機(jī)每上升或下降1km需消耗2L燃油,那么這架飛機(jī)在這4個(gè)動(dòng)作表演過(guò)程中,一共消耗了多少升燃油?
(3)如果飛機(jī)做特技表演時(shí),有4個(gè)規(guī)定動(dòng)作,起飛后高度變化如下:上升3.8km,下降2.9km,再上升1.6km.若要使飛機(jī)最終比起飛點(diǎn)高出1km,問(wèn)第4個(gè)動(dòng)作是上升還是下降,上升或下降多少千米?
答案:(1)$(+4.5) + (-3.2) + (1.1) + (-1.4) = 1(km)$.
答:此時(shí)這架飛機(jī)比起飛點(diǎn)高了 1 km.
(2)$|+4.5| + |-3.2| + |+1.1| + |-1.4| = 4.5 + 3.2 + 1.1 + 1.4 = 10.2(km)$,$10.2×2 = 20.4(L)$.
答:一共消耗了 20.4 L 燃油.
(3)$+3.8 - 2.9 + 1.6 = 2.5(km)$,因?yàn)橐癸w機(jī)最終比起飛點(diǎn)高出 1 km,所以第 4 個(gè)動(dòng)作是下降,下降的距離為$2.5 - 1 = 1.5(km)$.
11.新題型 雙空題 數(shù)軸上100個(gè)點(diǎn)所表示的數(shù)分別為$a_{1},a_{2},a_{3},...,a_{100}$,且當(dāng)i為奇數(shù)時(shí),$a_{i+1}-a_{i}= -2$,當(dāng)i為偶數(shù)時(shí),$a_{i+1}-a_{i}= 1$.
(1)$a_{5}-a_{1}=$
-2
;
(2)$a_{100}-a_{11}=$
-46
.
答案:(1)-2 (2)-46 解析:(1)因?yàn)楫?dāng) i 為奇數(shù)時(shí),$a_{i + 1} - a_{i} = -2$,當(dāng) i 為偶數(shù)時(shí),$a_{i + 1} - a_{i} = 1$,所以$a_{5} - a_{1} = a_{5} - a_{4} + a_{4} - a_{3} + a_{3} - a_{2} + a_{2} - a_{1} = (a_{5} - a_{4}) + (a_{4} - a_{3}) + (a_{3} - a_{2}) + (a_{2} - a_{1}) = 1 - 2 + 1 - 2 = -2$. (2)因?yàn)?a_{100} - a_{11} = a_{100} - a_{99} + a_{99} - a_{98} + \cdots + a_{12} - a_{11} = (a_{100} - a_{99}) + (a_{99} - a_{98}) + \cdots + (a_{12} - a_{11}) = -2 + 1 - 2 + 1 - \cdots - 2 = (-2)×45 + 1×44 = -46$,所以$a_{100} - a_{11} = -46$.
解析:
(1) $a_{5}-a_{1}=(a_{5}-a_{4})+(a_{4}-a_{3})+(a_{3}-a_{2})+(a_{2}-a_{1})$,因?yàn)楫?dāng)$i$為奇數(shù)時(shí),$a_{i+1}-a_{i}=-2$,當(dāng)$i$為偶數(shù)時(shí),$a_{i+1}-a_{i}=1$,所以$a_{2}-a_{1}=-2$,$a_{3}-a_{2}=1$,$a_{4}-a_{3}=-2$,$a_{5}-a_{4}=1$,則原式$=1+(-2)+1+(-2)=-2$。
(2) $a_{100}-a_{11}=(a_{100}-a_{99})+(a_{99}-a_{98})+\cdots+(a_{12}-a_{11})$,從$a_{11}$到$a_{100}$共有$100-11=89$個(gè)間隔,即$89$項(xiàng)差。因?yàn)?i$從$11$到$99$,其中奇數(shù)$i$有$(99-11)÷2+1=45$個(gè),偶數(shù)$i$有$89-45=44$個(gè),奇數(shù)$i$對(duì)應(yīng)的差為$-2$,偶數(shù)$i$對(duì)應(yīng)的差為$1$,所以原式$=(-2)×45 + 1×44=-90 + 44=-46$。
(1)-2;(2)-46
12.新題型 新定義 在有理數(shù)的范圍內(nèi),我們定義三個(gè)數(shù)之間的新運(yùn)算“”法則:$a\ b\ c= \frac {|a-b-c|+a+b+c}{2}$.
如:$(-1)\ 2\ 3= \frac {|-1-2-3|+(-1)+2+3}{2}= 5$.
(1)計(jì)算:$4\ (-2)\ (-5)= $
4
.
(2)計(jì)算:$3\ (-7)\ \frac {11}{3}= $
3
.
(3)在$-\frac {6}{7},-\frac {5}{7},... ,-\frac {1}{7},0,\frac {1}{9},\frac {2}{9},... ,\frac {8}{9}$這15個(gè)數(shù)中:
①任取三個(gè)數(shù)作為a,b,c的值,進(jìn)行“$a\ b\ c$”運(yùn)算,則所有計(jì)算結(jié)果的最小值是
$-\frac{6}{7}$
;
②若將這15個(gè)數(shù)任意分成五組,每組三個(gè)數(shù),進(jìn)行“$a\ b\ c$”運(yùn)算,得到五個(gè)不同的結(jié)果,由于分組不同,所以五個(gè)運(yùn)算的結(jié)果也不同,試求這五個(gè)結(jié)果之和的最大值.
4
答案:
(1)4
(2)3
(3)①$-\frac{6}{7}$ 解析:當(dāng)$a < b + c$時(shí),$a\#b\#c = b + c$;當(dāng)$a > b + c$或$a = b + c$時(shí),$a\#b\#c = a$,所以當(dāng)$a = -\frac{6}{7}$,且$a > b + c$或$a = b + c$時(shí),$a\#b\#c$有最小值為$-\frac{6}{7}$.
②當(dāng)$a = -\frac{6}{7}$,$b = \frac{1}{9}$,$c = \frac{2}{9}$時(shí),計(jì)算結(jié)果為$\frac{1}{9} + \frac{2}{9} = \frac{1}{3}$;當(dāng)$a = -\frac{5}{7}$,$b = \frac{3}{9}$,$c = \frac{4}{9}$時(shí),計(jì)算結(jié)果為$\frac{3}{9} + \frac{4}{9} = \frac{7}{9}$;當(dāng)$a = -\frac{4}{7}$,$b = \frac{5}{9}$,$c = \frac{6}{9}$時(shí),計(jì)算結(jié)果為$\frac{5}{9} + \frac{6}{9} = \frac{11}{9}$;當(dāng)$a = -\frac{3}{7}$,$b = \frac{7}{9}$,$c = \frac{8}{9}$時(shí),計(jì)算結(jié)果為$\frac{7}{9} + \frac{8}{9} = \frac{5}{3}$;當(dāng)$a = 0$,$b = -\frac{1}{7}$,$c = -\frac{2}{7}$時(shí),計(jì)算結(jié)果為 0.所以這五個(gè)結(jié)果之和的最大值為$\frac{1}{3} + \frac{7}{9} + \frac{11}{9} + \frac{5}{3} + 0 = 4$.