19. (12分)(2024·南京校級月考)已知直線$l_1 // l_2$,A為直線$l_1$上的一個定點,過點A的直線交$l_2$于點B,點C在線段BA的延長線上.D,E為直線$l_2$上的兩個動點,點D在點E的左側(cè),連接AD,AE,滿足$∠AED = ∠DAE$.點M在$l_2$上,且在點B的左側(cè),點N在直線$l_1$上.
(1)如圖①,若$∠BAD = 25^{\circ}$,$∠AED = 50^{\circ}$,直接寫出$∠ABM$的度數(shù)為______$^{\circ}$.
(2)射線AF為$∠CAD$的平分線.
①如圖②,當點D在點B右側(cè)時,用等式表示$∠EAF與∠ABD$之間的數(shù)量關(guān)系,并說明理由;
②當點D與點B不重合,且$∠ABM + ∠EAF = 150^{\circ}$時,直接寫出$∠EAF$的度數(shù)為______.

答案:(1) 125 解析:如圖①所示,因為 $ l_1 // l_2 $,所以 $ \angle ABM = \angle BAN $, $ \angle NAE = \angle AED = 50^{\circ} $.因為 $ \angle BAD = 25^{\circ} $, $ \angle DAE = \angle AED = 50^{\circ} $,所以 $ \angle ABM = \angle BAN = \angle BAD + \angle DAE + \angle NAE = 25^{\circ} + 50^{\circ} + 50^{\circ} = 125^{\circ} $. (2) ① $ \angle ABD = 2 \angle EAF $. 理由:因為 $ l_1 // l_2 $,所以 $ \angle CAN = \angle ABD $, $ \angle NAE = \angle AED $. 又因為 $ AF $ 平分 $ \angle CAD $,所以 $ \angle DAF = \angle CAF = \frac{1}{2} \angle CAD $. 因為 $ \angle DAE = \angle AED = \angle NAE $,所以 $ \angle DAE = \frac{1}{2} ( \angle DAE + \angle NAE ) = \frac{1}{2} \angle DAN $,所以 $ \angle EAF = \angle DAF - \angle DAE = \frac{1}{2} \angle CAD - \frac{1}{2} \angle DAN = \frac{1}{2} \angle CAN = \frac{1}{2} \angle ABD $. 即 $ \angle ABD = 2 \angle EAF $.

② $ 30^{\circ} $ 或 $ 110^{\circ} $ 解析:Ⅰ. 如圖②所示,點 $ D $ 在點 $ B $ 右側(cè),此時有 $ \angle EAF = \frac{1}{2} \angle ABD $,因為 $ \angle ABM + \angle EAF = 150^{\circ} $,所以 $ \angle ABM + \frac{1}{2} \angle ABD = 150^{\circ} $. 又因為 $ \angle ABM + \angle ABD = 180^{\circ} $,所以 $ \frac{1}{2} \angle ABD = 180^{\circ} - 150^{\circ} = 30^{\circ} $,所以 $ \angle EAF = 30^{\circ} $. Ⅱ. 如圖③所示,點 $ D $ 在點 $ B $ 左側(cè),點 $ E $ 在點 $ B $ 右側(cè),因為 $ AF $ 平分 $ \angle CAD $,所以 $ \angle DAF = \frac{1}{2} \angle CAD $. 因為 $ l_1 // l_2 $,所以 $ \angle AED = \angle NAE $, $ \angle CAN = \angle ABE $. 因為 $ \angle DAE = \angle AED = \angle NAE $,所以 $ \angle DAE = \frac{1}{2} ( \angle DAE + \angle NAE ) = \frac{1}{2} \angle DAN $,所以 $ \angle EAF = \angle DAF + \angle DAE = \frac{1}{2} ( \angle CAD + \angle DAN ) = \frac{1}{2} × ( 360^{\circ} - \angle CAN ) = 180^{\circ} - \frac{1}{2} \angle ABE $. 因為 $ \angle ABE + \angle ABM = 180^{\circ} $,所以 $ \angle EAF = 180^{\circ} - \frac{1}{2} ( 180^{\circ} - \angle ABM ) = 90^{\circ} + \frac{1}{2} \angle ABM $. 又因為 $ \angle EAF + \angle ABM = 150^{\circ} $,所以 $ \angle EAF = 90^{\circ} + \frac{1}{2} ( 150^{\circ} - \angle EAF ) = 165^{\circ} - \frac{1}{2} \angle EAF $,所以 $ \angle EAF = 110^{\circ} $. Ⅲ. 如圖④所示, $ D $, $ E $ 均在點 $ B $ 左側(cè),此時 $ \angle DAE = \frac{1}{2} \angle DAN $, $ \angle DAF = \frac{1}{2} \angle CAD $, $ \angle EAF = \angle DAE + \angle DAF = \frac{1}{2} ( 360^{\circ} - \angle CAN ) = 180^{\circ} - \frac{1}{2} \angle ABG = 180^{\circ} - \frac{1}{2} ( 180^{\circ} - \angle ABM ) = 90^{\circ} + \frac{1}{2} \angle ABM $,所以 $ \angle EAF = 110^{\circ} $. 綜上所述, $ \angle EAF = 30^{\circ} $ 或 $ \angle EAF = 110^{\circ} $.
