4. (2025·成都期末) 已知$\angle AOB = 90^{\circ}$。
(1) 如圖①,若射線(xiàn)$ON$,$OM分別為\angle AOC$,$\angle BOC$的平分線(xiàn),則$\angle MON = $______。
(2) 如圖②,射線(xiàn)$OC從OA出發(fā)繞點(diǎn)O以每秒20^{\circ}$的速度沿逆時(shí)針?lè)较蛐D(zhuǎn),射線(xiàn)$OD從OA出發(fā)繞點(diǎn)O以每秒10^{\circ}$的速度沿順時(shí)針?lè)较蛐D(zhuǎn),設(shè)運(yùn)動(dòng)時(shí)間為$t$秒,且$OM平分\angle BOC$。
①當(dāng)$0 < t < 4.5$時(shí),若$ON分\angle AOC為1:3$兩個(gè)部分,求滿(mǎn)足$\angle DON = \frac{1}{2}\angle MON$時(shí),$t$的值。
②如圖③,若$OP平分\angle AOD$,當(dāng)$0 < t < 6且t \neq 4.5$時(shí),試判斷$2\angle MOP - \angle COD$是否為定值。若是,請(qǐng)求出該定值;若不是,請(qǐng)說(shuō)明理由。

答案:4.(1)45° 解析:如圖①,∠AOB = 90°,則∠AOC + ∠BOC = 90°.因?yàn)樯渚€(xiàn)ON,OM分別為∠AOC,∠BOC的平分線(xiàn),所以∠CON = $\frac{1}{2}$∠AOC,∠MOC = $\frac{1}{2}$∠BOC,所以∠MON = ∠CON + ∠MOC = $\frac{1}{2}$(∠AOC + ∠BOC) = $\frac{1}{2}$×90° = 45°.
(2)①如圖②,因?yàn)樯渚€(xiàn)OC從OA出發(fā)繞點(diǎn)O以每秒20°的速度沿逆時(shí)針?lè)较蛐D(zhuǎn),射線(xiàn)OD從OA出發(fā)繞點(diǎn)O以每秒10°的速度沿順時(shí)針?lè)较蛐D(zhuǎn),運(yùn)動(dòng)時(shí)間為t秒,所以∠AOC = (20t)°,∠AOD = (10t)°,所以∠BOC = 90° - (20t)°.因?yàn)镺M平分∠BOC,ON分∠AOC為1:3兩個(gè)部分,所以∠COM = $\frac{1}{2}$∠BOC = 45° - (10t)°,∠AON = $\frac{1}{4}$∠AOC = (5t)°,∠CON = $\frac{3}{4}$∠AOC = (15t)°或∠AON = $\frac{3}{4}$∠AOC = (15t)°,∠CON = $\frac{1}{4}$∠AOC = (5t)°.當(dāng)∠AON = $\frac{1}{4}$∠AOC = (5t)°,∠CON = $\frac{3}{4}$∠AOC = (15t)°時(shí),所以∠DON = ∠AON + ∠AOD = (5t)° + (10t)° = (15t)°,∠MON = ∠COM + ∠CON = 45° - (10t)° + (15t)° = 45° + (5t)°.因?yàn)椤螪ON = $\frac{1}{2}$∠MON,所以(15t)° = $\frac{1}{2}$[45° + (5t)°],解得t = $\frac{9}{5}$;
當(dāng)∠AON = $\frac{3}{4}$∠AOC = (15t)°,∠CON = $\frac{1}{4}$∠AOC = (5t)°時(shí),所以∠DON = ∠AON + ∠AOD = (15t)° + (10t)° = (25t)°,∠MON = ∠COM + ∠CON = 45° - (10t)° + (5t)° = 45° - (5t)°.因?yàn)椤螪ON = $\frac{1}{2}$∠MON,所以(25t)° = $\frac{1}{2}$[45° - (5t)°],解得t = $\frac{9}{11}$
綜上所述,t的值為$\frac{9}{5}$或$\frac{9}{11}$
②當(dāng)0 < t < 4.5時(shí),如圖③,∠AOC = (20t)°,∠AOD = (10t)°,∠BOC = 90° - (20t)°,因?yàn)镺M平分∠BOC,OP平分∠AOD,所以∠MOC = $\frac{1}{2}$∠BOC = 45° - (10t)°,∠AOP = $\frac{1}{2}$∠AOD = (5t)°,所以∠MOP = ∠MOC + ∠AOC + ∠AOP = 45° - (10t)° + (20t)° + (5t)° = 45° + (15t)°,∠COD = ∠AOC + ∠AOD = (20t)° + (10t)° = (30t)°,所以2∠MOP - ∠COD = 2[45° + (15t)°] - (30t)° = 90°,為定值;
當(dāng)4.5 < t < 6時(shí),如圖④,∠AOC = (20t)°,∠AOD = (10t)°,∠BOC = (20t)° - 90°,因?yàn)镺M平分∠BOC,OP平分∠AOD,所以∠MOB = $\frac{1}{2}$∠BOC = (10t)° - 45°,∠AOP = $\frac{1}{2}$∠AOD = (5t)°,所以∠MOP = ∠MOB + ∠AOB + ∠AOP = (10t)° - 45° + 90° + (5t)° = 45° + (15t)°,∠COD = ∠AOC + ∠AOD = (20t)° + (10t)° = (30t)°,所以2∠MOP - ∠COD = 2[45° + (15t)°] - (30t)° = 90°,為定值.
綜上所述,2∠MOP - ∠COD = 90°,為定值
