5. 已知直線$AB// DC$,點(diǎn)$P$為平面上一點(diǎn),連接$AP與CP$。
(1)如圖①,點(diǎn)$P在直線AB$,$CD$之間,當(dāng)$∠BAP = 60^{\circ}$,$∠DCP = 20^{\circ}$時(shí),求$∠APC$的度數(shù)。
(2)如圖②,點(diǎn)$P在直線AB$,$CD$之間,在$AC$左側(cè),$∠BAP與∠DCP的平分線相交于點(diǎn)K$,寫出$∠AKC與∠APC$之間的數(shù)量關(guān)系,并說明理由。
(3)如圖③,點(diǎn)$P落在CD$外,$∠BAP與∠DCP的平分線相交于點(diǎn)K$,$∠AKC與∠APC$有何數(shù)量關(guān)系?并說明理由。


答案:5.(1)如圖①,過點(diǎn)P作PE//AB,因?yàn)锳B//CD,所以PE//AB//CD,所以∠APE = ∠BAP,∠CPE = ∠DCP,所以∠APC = ∠APE + ∠CPE = ∠BAP + ∠DCP = 60° + 20° = 80°.
(2)∠AKC = $\frac{1}{2}$∠APC.理由:如圖②,過點(diǎn)K作KE//AB,因?yàn)锳B//CD,所以KE//AB//CD,所以∠AKE = ∠BAK,∠CKE = ∠DCK,所以∠AKC = ∠AKE + ∠CKE = ∠BAK + ∠DCK.過點(diǎn)P作PF//AB,同理可得∠APC = ∠BAP + ∠DCP.因?yàn)椤螧AP 與∠DCP 的平分線交于點(diǎn)K,所以∠BAK + ∠DCK = $\frac{1}{2}$∠BAP + $\frac{1}{2}$∠DCP = $\frac{1}{2}$(∠BAP + ∠DCP) = $\frac{1}{2}$∠APC,所以∠AKC = $\frac{1}{2}$∠APC.
(3)∠AKC = $\frac{1}{2}$∠APC.理由:如圖③,過點(diǎn)K作KE//AB,因?yàn)锳B//CD,所以KE//AB//CD,所以∠BAK = ∠AKE,∠DCK = ∠CKE,所以∠AKC = ∠AKE - ∠CKE = ∠BAK - ∠DCK.過點(diǎn)P作PF//AB,同理可得∠APC = ∠BAP - ∠DCP.因?yàn)椤螧AP 與∠DCP 的平分線相交于點(diǎn)K,所以∠BAK - ∠DCK = $\frac{1}{2}$∠BAP - $\frac{1}{2}$∠DCP = $\frac{1}{2}$(∠BAP - ∠DCP) = $\frac{1}{2}$∠APC,所以∠AKC = $\frac{1}{2}$∠APC.
