亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

零五網(wǎng) 全部參考答案 經(jīng)綸學典學霸 2025年學霸題中題七年級數(shù)學上冊蘇科版 第141頁解析答案
10. 如圖,∠BOC與∠AOC互為補角,OD平分∠AOC, ∠BOC = n°,則∠DOB =
90 + $\frac{1}{2}$n
°.(用含n的代數(shù)式表示)
答案:(90 + $\frac{1}{2}$n) 解析:因為∠BOC = n°,且∠BOC + ∠AOC = 180°,所以∠AOC = 180° - n°。因為OD平分∠AOC,所以∠COD = $\frac{1}{2}$(180° - n°) = 90° - $\frac{1}{2}$n°,所以∠DOB = ∠BOC + ∠COD = n° + 90° - $\frac{1}{2}$n° = (90 + $\frac{1}{2}$n)°。
11. 如圖,∠AOB = 60°, OC是∠AOB的平分線$,OC_1$是∠AOC的平分線$,OC_2$是$∠AOC_1$的平分線,…,OC?是$∠AOC??_1$的平分線,則∠AOC? = ____
$\frac{1}{2^{n + 1}}$×60°
.
答案:$\frac{1}{2^{n + 1}}$×60° 解析:因為OC平分∠AOB,所以∠AOC = $\frac{1}{2}$∠AOB。當n = 1時,因為OC?平分∠AOC,∠AOB = 60°,所以∠AOC? = $\frac{1}{2}$∠AOC = $\frac{1}{2}$×$\frac{1}{2}$∠AOB = $\frac{1}{2^2}$×60°。當n = 2時,因為OC?是∠AOC?的平分線,所以∠AOC? = $\frac{1}{2}$∠AOC? = $\frac{1}{2}$×$\frac{1}{2^2}$×60° = $\frac{1}{2^3}$×60°。當n = 3時,因為OC?是∠AOC?的平分線,所以∠AOC? = $\frac{1}{2}$∠AOC? = $\frac{1}{2^4}$×60°,…,所以∠AOC? = $\frac{1}{2^{n + 1}}$×60°。
解析:
解:因為OC平分∠AOB,∠AOB=60°,所以∠AOC=$\frac{1}{2}$∠AOB=$\frac{1}{2}$×60°。
當n=1時,OC?平分∠AOC,∠AOC?=$\frac{1}{2}$∠AOC=$\frac{1}{2}$×$\frac{1}{2}$×60°=$\frac{1}{2^2}$×60°;
當n=2時,OC?平分∠AOC?,∠AOC?=$\frac{1}{2}$∠AOC?=$\frac{1}{2}$×$\frac{1}{2^2}$×60°=$\frac{1}{2^3}$×60°;
……
以此類推,∠AOC?=$\frac{1}{2^{n+1}}$×60°。
$\frac{1}{2^{n+1}}$×60°
12. (2024·南京期末)如圖,已知∠AOC = ∠BOD = m°,將∠BOD繞點O旋轉(zhuǎn),使射線OC,OD的夾角為n°,OE平分∠AOD,m + n < 180,m > n,則∠EOC的度數(shù)為____°.(用含m,n的代數(shù)式表示)
答案:
($\frac{1}{2}$m - $\frac{1}{2}$n) 或 ($\frac{1}{2}$m + $\frac{1}{2}$n) 解析:如圖①,當OD在∠AOC外部時,由題意可得∠COD = n°,因為∠AOC = m°,所以∠AOD = ∠AOC + ∠COD = m° + n° = (m + n)°。因為OE平分∠AOD,所以∠EOD = $\frac{1}{2}$∠AOD = ($\frac{1}{2}$m + $\frac{1}{2}$n)°,所以∠COE = ∠EOD - ∠COD = ($\frac{1}{2}$m + $\frac{1}{2}$n)° - n° = ($\frac{1}{2}$m - $\frac{1}{2}$n)°。 如圖②,當OD在∠AOC內(nèi)部時,由題意可得∠COD = n°,因為∠AOC = m°,所以∠AOD = ∠AOC - ∠COD = m° - n° = (m - n)°。因為OE平分∠AOD,所以∠EOD = $\frac{1}{2}$∠AOD = ($\frac{1}{2}$m - $\frac{1}{2}$n)°,所以∠COE = ∠EOD + ∠COD = ($\frac{1}{2}$m - $\frac{1}{2}$n)° + n° = ($\frac{1}{2}$m + $\frac{1}{2}$n)°。綜上所述,∠EOC的度數(shù)為($\frac{1}{2}$m - $\frac{1}{2}$n)°或($\frac{1}{2}$m + $\frac{1}{2}$n)°。
13. 如圖,A,O,B三點在同一直線上,∠BOD與∠BOC互補.
(1)∠AOC與∠BOD的度數(shù)相等嗎? 為什么?
(2)已知OM平分∠AOC,射線ON在∠COD的內(nèi)部,且滿足∠AOC與∠MON互余.
①若∠AOC = 32°,求∠MON的度數(shù);
②試探究∠AON與∠DON之間的數(shù)量關(guān)系,請寫出結(jié)論并說明理由.

答案:
(1)∠AOC與∠BOD的度數(shù)相等。理由:因為∠BOD與∠BOC互補,所以∠BOD + ∠BOC = 180°。因為∠AOC + ∠BOC = 180°,所以∠AOC與∠BOD的度數(shù)相等。(2)①因為∠AOC與∠MON互余,所以∠MON = 90° - ∠AOC = 90° - 32° = 58°。②∠AON = ∠DON。理由:如圖,因為OM平分∠AOC,所以∠AOC = 2∠AOM,∠COM = ∠AOM。因為∠AOC與∠MON互余,所以∠AOC + ∠MON = 90°,所以∠AON = 90° - ∠AOM,所以∠CON = 90° - 3∠AOM。因為∠BOD與∠BOC互補,所以∠BOD + ∠BOC = 180°,所以∠CON + ∠DON + 2∠BOD = 180°。又因為∠BOD = ∠AOC = 2∠AOM,所以∠DON = 180° - ∠CON - 2∠BOD = 180° - (90° - 3∠AOM) - 4∠AOM = 90° - ∠AOM,所以∠AON = ∠DON。
14. 已知射線OB,OC在∠AOD內(nèi)部,其中OB為∠AOC的三等分線,OE,OF分別平分∠BOD和∠COD,若∠EOF = 14°,則∠AOC = ____.
答案:
84°或42° 解析:因為OB為∠AOC的三等分線,設(shè)∠AOC = 3x,則∠BOC = x或2x。因為OF平分∠COD,設(shè)∠COD = 2y,則∠DOF = ∠COF = y,那么∠BOD = ∠BOC + ∠COD = x + 2y或2x + 2y。因為OE平分∠BOD,所以∠DOE = ∠BOE = 0.5x + y或x + y,所以∠EOF = ∠DOE - ∠DOF = 0.5x或x。因為∠EOF = 14°,所以x = 28°或14°,所以∠AOC = 3x = 84°或42°。
15. 點O為直線AB上一點,在直線AB同側(cè)任作射線OC,OD,使得∠COD = 90°.
(1)如圖①,過點O作射線OE,當OE恰好為∠AOC的平分線時,另作射線OF,使得OF平分∠BOD,則∠EOC + ∠DOF的度數(shù)是____°;
(2)如圖②,過點O作射線OG,當OG恰好為∠AOD的平分線時,求出∠BOD與∠COG的數(shù)量關(guān)系;
(3)過點O作射線OH,當OC恰好為∠AOH的平分線時,另作射線OK,使得OK平分∠COD,若∠HOC = 3∠HOK,求出∠AOH的度數(shù).

答案:
(1)45 解析:因為OE平分∠AOC,OF平分∠BOD,所以∠EOC = $\frac{1}{2}$∠AOC,∠DOF = $\frac{1}{2}$∠BOD。因為∠COD = 90°,所以∠AOC + ∠BOD = 90°,所以∠EOC + ∠DOF = $\frac{1}{2}$∠AOC + $\frac{1}{2}$∠BOD = 45°。(2)因為OG平分∠AOD,所以∠GOA = ∠GOD = $\frac{1}{2}$∠AOD,根據(jù)圖形可知∠BOD = 180° - ∠AOD,因為∠COD = 90°,所以∠COG = 90° - ∠GOD = 90° - $\frac{1}{2}$∠AOD。因為∠BOD = 180° - ∠AOD,所以∠BOD = 2∠COG。(3)當OH在OK左側(cè)時,如圖①所示。因為∠HOC = 3∠HOK,所以∠KOC = 4∠HOK。因為OK平分∠COD,所以∠KOC = $\frac{1}{2}$∠COD = $\frac{1}{2}$×90° = 45°,所以∠HOK = $\frac{1}{4}$∠KOC = $\frac{45°}{4}$。因為OC平分∠AOH,所以∠AOC = ∠HOC = 3∠HOK = $\frac{135°}{4}$,所以∠AOH = 2∠AOC = 2×$\frac{135°}{4}$ = 67.5°。當OK在OH左側(cè)時,如圖②所示。因為∠HOC = 3∠HOK,所以∠KOC = 2∠HOK。因為OK平分∠COD,所以∠KOC = $\frac{1}{2}$∠COD = $\frac{1}{2}$×90° = 45°,所以∠HOK = $\frac{1}{2}$∠KOC = 22.5°。因為OC平分∠AOH,所以∠AOC = ∠HOC = 3∠HOK = 67.5°,所以∠AOH = 2∠AOC = 2×67.5° = 135°。綜上所述,∠AOH為135°或67.5°。   
上一頁 下一頁