10.特色 多解法「2024海南中考,★☆」如圖,AD是半圓O的直徑,點B,C在半圓上,且$\overset{\frown}{AB}= \overset{\frown}{BC}= \overset{\frown}{CD}$,點P在$\overset{\frown}{CD}$上,若∠PCB= 130°,則∠PBA等于( )

A.105°
B.100°
C.90°
D.70°
答案:B 如圖,連接OB,OC. ∵AD是半圓O的直徑,∴∠AOD = 180°. ∵$\overset{\frown}{AB}$ = $\overset{\frown}{BC}$ = $\overset{\frown}{CD}$,∴∠AOB = ∠BOC = ∠COD = 60°. ∵OA = OB = OC,∴△AOB和△BOC均是等邊三角形,∴∠ABO = ∠CBO = ∠BCO = 60°,∴∠ABC = ∠ABO + ∠CBO = 120°.
[解法一] ∵∠BPC是$\overset{\frown}{BC}$所對的圓周角,∠BOC是$\overset{\frown}{BC}$所對的圓心角,
∴∠BPC = $\frac{1}{2}$∠BOC = 30°.
∵∠PCB = 130°,∴∠PBC = 180° - ∠BPC - ∠PCB = 180° - 30° - 130° = 20°,
∴∠ABP = ∠ABC - ∠PBC = 120° - 20° = 100°.故選B.
[解法二] 如圖,連接OP. ∵OC = OP,∴△COP是等腰三角形,∵∠PCB = 130°,∴∠OPC = ∠OCP = ∠PCB - ∠BCO = 130° - 60° = 70°,∴∠COP = 180° - ∠OPC - ∠OCP = 180° - 70° - 70° = 40°,∴∠PBC = $\frac{1}{2}$∠COP = $\frac{1}{2}$×40° = 20°,∴∠PBA = ∠ABC - ∠PBC = 120° - 20° = 100°.故選B.
11.「2025浙江杭州蕭山期中,★☆」如圖,AB為⊙O的直徑,點C為圓上一點,若將劣弧AC沿弦AC翻折交AB于點D,連接CD,∠DCA= 44°,則∠BAC的度數(shù)為( )

A.23°
B.24°
C.25°
D.26°
答案:A 如圖,連接BC,∵AB是⊙O的直徑,∴∠ACB = 90°,∵∠DCA = 44°,
∴∠BCD = 90° - 44° = 46°,根據(jù)翻折的性質(zhì),知$\overset{\frown}{ABC}$所對的圓周角為∠ADC,∵$\overset{\frown}{AC}$所對的圓周角為∠B,∴∠ADC + ∠B = 180°,∵∠ADC + ∠BDC = 180°,∴∠B = ∠BDC = $\frac{1}{2}$×(180° - 46°) = 67°,∴∠BAC = 90° - 67° = 23°.故選A.
12.「2024江蘇連云港中考,★☆」如圖,AB是圓的直徑,∠1、∠2、∠3、∠4的頂點均在AB上方的圓弧上,∠1、∠4的一邊分別經(jīng)過點A、B,則∠1+∠2+∠3+∠4=
90
°.

答案:答案 90
解析 ∵AB是圓的直徑,∴AB所對的弧是半圓,所對圓心角的度數(shù)為180°,∵∠1、∠2、∠3、∠4所對的弧的和為半圓,∴∠1 + ∠2 + ∠3 + ∠4 = $\frac{1}{2}$×180° = 90°.
13.「2024山西朔州懷仁期中,★☆」如圖,AC,BD是⊙O的兩條相交弦,∠ACB= ∠CDB= 60°,AC= 2$\sqrt{3}$,則⊙O的直徑是______.

答案:答案 4
解析 如圖,作直徑BM,連接CM,∴∠BCM = 90°,易知∠A = ∠D = ∠M = 60°,∵∠ACB = 60°,
∴∠ABC = 60°,∴△ABC是等邊三角形,∴BC = AC = 2$\sqrt{3}$. 在Rt△BCM中,∠M = 60°,∴∠CBM = 30°,∴BM = 2CM,∵BC2 + CM2 = BM2,∴(2$\sqrt{3}$)2 + CM2 = 4CM2,∴CM = 2(舍負),∴BM = 4,∴⊙O的直徑是4.
14.「2024浙江湖州南潯期末,★☆」如圖,△ABC中,AB= AC,以AB為直徑作⊙O,交BC邊于點D,交CA的延長線于點E,連接AD,DE.
(1)求證:BD= CD.
(2)若AB= 5,DE= 4,求AD的長.

(1)證明:∵AB是⊙O的直徑,∴∠ADB = 90°,∴AD⊥BD,又∵AB = AC,∴BD = CD.
(2)∵AB = 5,∴AC = AB = 5,∴∠B = ∠C. ∵∠B = ∠E,∴∠E = ∠C,∴DC = DE = 4. ∵∠ADB = 90°,∴∠ADC = 90°,∴AD = $\sqrt{AC^{2}-CD^{2}}$ = $\sqrt{5^{2}-4^{2}}$ =
3
.
答案:解析 (1)證明:∵AB是⊙O的直徑,∴∠ADB = 90°,∴AD⊥BD,又∵AB = AC,∴BD = CD.
(2)∵AB = 5,∴AC = AB = 5,∴∠B = ∠C. ∵∠B = ∠E,∴∠E = ∠C,∴DC = DE = 4. ∵∠ADB = 90°,∴∠ADC = 90°,∴AD = $\sqrt{AC^{2}-CD^{2}}$ = $\sqrt{5^{2}-4^{2}}$ = 3.
15.新 課標 推理能力「2025湖北荊州期中」如圖,AB為⊙O的直徑,點C,D為直徑AB同側(cè)圓上的點,且點D為$\overset{\frown}{AC}$的中點,過點D作DE⊥AB于點E,交AC于點G,延長DE,交⊙O于點F.
(1)如圖①,若∠BAC= 30°,求證:$\overset{\frown}{CD}= \overset{\frown}{BC}$.
(2)如圖②,若AC= 12,BE= 9,求⊙O的半徑.

答案:解析 (1)證明:如圖①,連接OC,OD,∵∠BAC = 30°,∴∠BOC = 2∠BAC = 60°,∴∠AOC = 180° - 60° = 120°,∵點D為$\overset{\frown}{AC}$的中點,∴$\overset{\frown}{AD}$ = $\overset{\frown}{DC}$,∴∠AOD = ∠COD = 60°,∴∠COD = ∠COB,∴$\overset{\frown}{CD}$ = $\overset{\frown}{BC}$.
(2)如圖②,連接OF,∵DE⊥AB,AB為⊙O的直徑,∴$\overset{\frown}{AD}$ = $\overset{\frown}{AF}$,DE = EF,∵$\overset{\frown}{AD}$ = $\overset{\frown}{DC}$,∴$\overset{\frown}{AD}$ + $\overset{\frown}{DC}$ = $\overset{\frown}{AD}$ + $\overset{\frown}{AF}$,∴$\overset{\frown}{AC}$ = $\overset{\frown}{DF}$,∴DF = AC = 12,∴EF = 6,設(shè)⊙O的半徑為r,則OE = BE - OB = 9 - r,在Rt△EOF中,EO2 + EF2 = OF2,即(9 - r)2 + 62 = r2,解得r = 6.5,∴⊙O的半徑為6.5.