亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

零五網(wǎng) 全部參考答案 5年中考3年模擬答案 2025年5年中考3年模擬九年級數(shù)學(xué)上冊人教版 第63頁解析答案
9. [2025 北京海淀月考,★☆]如圖,已知 AB 是$\odot O$的直徑,半徑$OC⊥AB$,D 是 CO 的中點,若過點 D 的弦$EF// AB$,則下列結(jié)論正確的是 ( )

A.$\overset{\frown }{EC}= \overset{\frown }{AE}$
B.$\overset{\frown }{EC}= 2\overset{\frown }{AE}$
C.$\overset{\frown }{EF}= 3\overset{\frown }{AE}$
D.$\overset{\frown }{ABF}= 4\overset{\frown }{AE}$
答案:
B 如圖,連接 OE、OF、CE,$\because OC⊥AB$,$EF// AB$,$\therefore OC⊥EF$,$\therefore ∠ODE = 90^{\circ}$,又$\because D$是 CO 的中點,$\therefore CE = OE = OC$,$\therefore \triangle COE$是等邊三角形,$\therefore ∠EOD = 60^{\circ}$,$\because EF// AB$,$\therefore ∠AOE = ∠OED = 90^{\circ} - ∠EOD = 30^{\circ}$,$\therefore \overset{\frown}{EC} = 2\overset{\frown}{AE}$,故選項 A 錯誤,選項 B 正確;易得$∠EOF = 120^{\circ}$,$\therefore \overset{\frown}{EF} = 4\overset{\frown}{AE}$,故選項 C 錯誤;$\because \overset{\frown}{ABF}$所對的圓心角的度數(shù)為$210^{\circ}$,$\therefore \overset{\frown}{ABF} = 7\overset{\frown}{AE}$,故選項 D 錯誤.故選 B.
10. [學(xué)科特色 方程思想 ★☆]如圖,AB 為$\odot O$的直徑,點 D 是$\overset{\frown }{AC}$的中點,過點 D 作$DE⊥AB$于點 E,延長 DE 交$\odot O$于點 F.若$AC= 4\sqrt {3}$,$AE= 2$,則$\odot O$的直徑為 (
B
)

A.$8\sqrt {3}$
B.8
C.10
D.$8\sqrt {2}$
答案:B 連接 OF(圖略),$\because DE⊥AB$,$\therefore DE = EF$,$\overset{\frown}{AD} = \overset{\frown}{AF}$,$\because$點 D 是$\overset{\frown}{AC}$的中點,$\therefore \overset{\frown}{AD} = \overset{\frown}{CD}$,$\therefore \overset{\frown}{AC} = \overset{\frown}{DF}$,$\therefore DF = AC = 4\sqrt{3}$,$\therefore EF = \frac{1}{2}DF = 2\sqrt{3}$,設(shè)$OA = OF = x$,$\therefore OE = x - 2$,在$Rt\triangle OEF$中,$x^{2} = (2\sqrt{3})^{2} + (x - 2)^{2}$,解得$x = 4$,$\therefore AB = 2x = 8$.故選 B.
11. [★☆]如圖,點 A、B、C、D 在$\odot O$上,且$\overset{\frown }{AD}= \overset{\frown }{BC}$,E 是 AB 延長線上一點,且$BE= AB$,F 是 EC 的中點,若$BF= 6cm$,則$BD= $______
12
cm.

答案:答案 12
解析 連接 AC(圖略),$\because F$是 EC 的中點,$\therefore CF = EF$,$\because BE = AB$,$\therefore BF$是$\triangle EAC$的中位線,$\therefore BF = \frac{1}{2}AC$,$\because \overset{\frown}{AD} = \overset{\frown}{BC}$,$\therefore \overset{\frown}{AD} + \overset{\frown}{AB} = \overset{\frown}{BC} + \overset{\frown}{AB}$,$\therefore \overset{\frown}{DB} = \overset{\frown}{AC}$,$\therefore BD = AC$,$\therefore BF = \frac{1}{2}BD$,$\therefore BD = 2BF = 12cm$.
12. [2025 江蘇泰州姜堰期中,★☆]如圖,在$\odot O$中,$\overset{\frown }{AB}= 2\overset{\frown }{BC}$,且$BD⊥OC$,垂足為 D.若$AB= 8$,$CD= 2$,則$\odot O$的半徑為______.

答案:
答案 5
解析 如圖,過點 O 作 AB 的垂線交 AB 于點 E,交$\overset{\frown}{AB}$于點 F,連接 OB.$\because OF⊥AB$,$AB = 8$,$\therefore \overset{\frown}{AF} = \overset{\frown}{BF} = \frac{1}{2}\overset{\frown}{AB}$,$AE = BE = \frac{1}{2}AB = \frac{1}{2}×8 = 4$,$\because \overset{\frown}{AB} = 2\overset{\frown}{BC}$,$\therefore \overset{\frown}{BC} = \frac{1}{2}\overset{\frown}{AB} = \overset{\frown}{BF}$,$\therefore ∠BOC = ∠BOF$,即 OB 平分$∠COF$,$\because BD⊥OC$,$\therefore BD = BE = 4$,設(shè)$\odot O$的半徑為 r,則$OB = OC = r$,$\because CD = 2$,$\therefore OD = OC - CD = r - 2$,在$Rt\triangle BOD$中,由勾股定理,得$BD^{2} + OD^{2} = OB^{2}$,$\therefore 4^{2} + (r - 2)^{2} = r^{2}$,$\therefore r = 5$,$\therefore \odot O$的半徑為 5.
13. [2025 貴州貴陽期中,★☆]如圖,AB 為$\odot O$的弦,半徑 OC,OD 分別交 AB 于點 E,F,且$\overset{\frown }{AC}= \overset{\frown }{DB}$.
(1)求證:$AE= BF$.
(2)作半徑$ON⊥AB$于點 M,若$AB= 12$,$MN= 3$,求 OM 的長.

答案:
解析 (1)證明:連接 OA,OB,如圖.$\because OA = OB$,$\therefore ∠OAB = ∠OBA$,$\because \overset{\frown}{AC} = \overset{\frown}{BD}$,$\therefore ∠AOE = ∠BOF$,在$\triangle AOE$和$\triangle BOF$中,$\begin{cases}∠OAE = ∠OBF,\\OA = OB,\\∠AOE = ∠BOF,\end{cases}$ $\therefore \triangle AOE ≌ \triangle BOF(ASA)$,$\therefore AE = BF$.(2)連接 OA,如圖.$\because OM⊥AB$,$\therefore AM = \frac{1}{2}AB = 6$,設(shè)$OM = x$,則$OA = ON = x + 3$,在$Rt\triangle AOM$中,由勾股定理得$6^{2} + x^{2} = (x + 3)^{2}$,解得$x = 4.5$,$\therefore OM = 4.5$.
八FAE野B
14. [新課標 推理能力]如圖,點 C、D 三等分以 O 為圓心的$\overset{\frown }{MN}$,連接 MN、CD、OC、OD、OM,下列結(jié)論錯誤的是 ( )

A.$∠COM= ∠COD$
B.若$OM= MN$,則$∠COD= 20^{\circ }$
C.$MN// CD$
D.$MN= 3CD$
答案:
D 如圖,連接 ON、MC、DN,過點 O 作$OE⊥CD$,交$\overset{\frown}{CD}$于點 E,$\because \overset{\frown}{CM} = \overset{\frown}{CD}$,$\therefore ∠COM = ∠COD$,故選項 A 結(jié)論正確.當$OM = MN$時,$\because OM = ON$,$\therefore OM = ON = MN$,$\therefore \triangle OMN$為等邊三角形,$\therefore ∠MON = 60^{\circ}$,$\because \overset{\frown}{CM} = \overset{\frown}{CD} = \overset{\frown}{DN}$,$\therefore ∠COM = ∠COD = ∠DON$,$\therefore ∠COD = 20^{\circ}$,故選項 B 結(jié)論正確.$\because OE⊥CD$,$\therefore \overset{\frown}{CE} = \overset{\frown}{DE}$,$\therefore \overset{\frown}{ME} = \overset{\frown}{NE}$,$\therefore OE⊥MN$,$\therefore MN// CD$,故選項 C 結(jié)論正確.$\because \overset{\frown}{CM} = \overset{\frown}{CD} = \overset{\frown}{DN}$,$\therefore MC = CD = DN$,$\because MC + CD + DN > MN$,$\therefore MN < 3CD$,故選項 D 結(jié)論錯誤.故選 D.
15. [新課標 幾何直觀 2025 河南駐馬店西平期中]如圖,CD 是$\odot O$的直徑,點 A 是半圓上靠近點 D 的一個三等分點,B 是$\overset{\frown }{AD}$的中點,P 為直線 CD 上的一個動點,當$CD= 4$時,$AP+BP$的最小值為______.

答案:
答案 $2\sqrt{2}$
解析 如圖,作點 A 關(guān)于 CD 的對稱點$A'$,連接$A'B$,交 CD 于點 P,此時$PA + PB$的值最小,最小值為$A'B$的長,連接$OA'$,OB,$\because$點 A 與$A'$關(guān)于 CD 對稱,點 A 是半圓上靠近點 D 的一個三等分點,$\therefore PA = PA'$,$∠A'OD = ∠AOD = 60^{\circ}$,$\because$點 B 是$\overset{\frown}{AD}$的中點,$\therefore ∠BOD = 30^{\circ}$,$\therefore ∠A'OB = ∠A'OD + ∠BOD = 90^{\circ}$,易知$OB = OA' = 2$,$\therefore A'B = 2\sqrt{2}$,$\therefore PA + PB = PA' + PB = A'B = 2\sqrt{2}$,$\therefore AP + BP$的最小值為$2\sqrt{2}$.
01PA
上一頁 下一頁