【答案】:
$ $
$1^{3}+2^{3}+3^{3}+4^{3}+5^{3}+6^{3}=21^{2}$
$\frac{1}{4}n^{2}(n+1)^{2}$
$ $解$:$原式$=\frac {\frac {1}{4}×2024^{2}×2025^{2}}{\frac {2024×2025}{2}}=\frac {2024×2025}{2}=2049300$
【解析】:
(1) $1^{3}+2^{3}+3^{3}+4^{3}+5^{3}+6^{3}=21^{2}$
(2) $\left(\frac{n(n+1)}{2}\right)^{2}$
(3) $\frac{\left(\frac{2024×(2024+1)}{2}\right)^{2}}{\frac{2024×(2024+1)}{2}}=\frac{2024×2025}{2}=2049300$