【答案】:
解$:$
$(1)$由題$,2×3+3x=2×\frac {1}{2}+\frac {1}{2}x$
$\ \ \ \ \ x=-2$
$(2)$由題$,(-3)*(4+2x)=x+24$
$\ \ \ \ -6-12-6x=x+24$
$\ \ \ \ \ \ x=-6$
【解析】:
(1)由新運(yùn)算定義可得:
$\begin{aligned}3*x&=2×3 + 3x = 6 + 3x\\frac{1}{2}*x&=2×\frac{1}{2} + \frac{1}{2}x = 1 + \frac{1}{2}x\end{aligned}$
因?yàn)?3*x = \frac{1}{2}*x$,所以:
$6 + 3x = 1 + \frac{1}{2}x$
移項(xiàng)得:
$3x - \frac{1}{2}x = 1 - 6$
$\frac{5}{2}x = -5$
解得:
$x = -2$
(2)先計(jì)算$2*x$:
$2*x = 2×2 + 2x = 4 + 2x$
則$(-3)*(2*x)=(-3)*(4 + 2x)$,由新運(yùn)算定義:
$(-3)*(4 + 2x)=2×(-3) + (-3)(4 + 2x) = -6 - 12 - 6x = -18 - 6x$
因?yàn)?(-3)*(2*x)=x + 24$,所以:
$-18 - 6x = x + 24$
移項(xiàng)得:
$-6x - x = 24 + 18$
$-7x = 42$
解得:
$x = -6$