(1)AD是$\odot O$的切線,理由如下:
連接$OA,$
因為$\angle B = 30^{\circ},$根據(jù)同弧所對的圓心角是圓周角的兩倍,所以$\angle AOC = 2\angle B = 60^{\circ}。$
又因為$OA = OC$(均為$\odot O$的半徑),所以$\triangle AOC$是等邊三角形,因此$\angle OAC = 60^{\circ}。$
已知$\angle CAD = 30^{\circ},$所以$\angle OAD = \angle OAC + \angle CAD = 60^{\circ} + 30^{\circ} = 90^{\circ},$即$OA \perp AD。$
因為$OA$是$\odot O$的半徑,所以$AD$是$\odot O$的切線。
(2)設(shè)$OD$與$AB$交于點$E,$
因為$OD \perp AB,$所以$\angle AEO = \angle BEO = 90^{\circ}。$
在$Rt\triangle BEC$中,$\angle B = 30^{\circ},$$BC = 5,$根據(jù)直角三角形中$30^{\circ}$所對的直角邊是斜邊的一半,可得$CE = \frac{1}{2}BC = \frac{5}{2}。$
由(1)知$\triangle AOC$是等邊三角形,所以$AC = OC = OA = 5,$則$OE = OC - CE = 5 - \frac{5}{2} = \frac{5}{2}。$
在$Rt\triangle AEO$中,$OA = 5,$$OE = \frac{5}{2},$根據(jù)勾股定理可得$AE = \sqrt{OA^2 - OE^2} = \sqrt{5^2 - (\frac{5}{2})^2} = \frac{5\sqrt{3}}{2}。$
在$Rt\triangle AED$中,$\angle CAD = 30^{\circ},$$\angle EAD = \angle EAC + \angle CAD,$因為$\triangle AOC$是等邊三角形,$\angle OAC = 60^{\circ},$$OD \perp AB,$所以$\angle EAC = \frac{1}{2}\angle OAC = 30^{\circ}$(等腰三角形三線合一),則$\angle EAD = 30^{\circ} + 30^{\circ} = 60^{\circ},$所以$\angle D = 30^{\circ}。$
因為$\angle D = 30^{\circ},$$AE = \frac{5\sqrt{3}}{2},$所以$AD = 2AE = 2\times\frac{5\sqrt{3}}{2} = 5\sqrt{3}。$
綜上,$AD$的長為$5\sqrt{3}。$