$1. 首先求AB的長:$
$因?yàn)閈angle BAC = 90^{\circ},BC是圓的直徑,BC=\sqrt{2}\mathrm{m}。$
$根據(jù)勾股定理AB^{2}+AC^{2}=BC^{2},又因?yàn)锳B = AC(同圓中,$
$90^{\circ}圓周角所對的弧相等,弦相等)。$
$所以2AB^{2}=BC^{2},將BC = \sqrt{2}代入可得2AB^{2}=(\sqrt{2})^{2},$
$即2AB^{2}=2,解得AB = 1\mathrm{m}。$
$2. 然后求圓錐底面圓半徑:$
$解:設(shè)所得圓錐的底面圓半徑為r。$
$扇形ABC的弧長l=\frac{n\pi R}{180}(n = 90,R = AB = 1),則弧長$
$=\frac{90\pi×1}{180}=\frac{\pi}{2}。$
$因?yàn)閳A錐底面圓的周長C = 2\pi r,且圓錐底面圓的周長等于扇形的$
$弧長,即2\pi r=\frac{\pi}{2}。$
$兩邊同時(shí)除以\pi得2r=\frac{1}{2},解得r=\frac{1}{4}\mathrm{m}。$
$綜上,(1)AB的長為1\mathrm{m};(2)所得圓錐的底面圓半徑$
$為\frac{1}{4}\mathrm{m}。$