$\widehat{BD}$與$\widehat{DE}$相等,理由如下:
連接$OD$、$OE,$如圖所示。
$\because \triangle ABC$是等邊三角形,
$\therefore \angle B = \angle C = 60^\circ。$
又$\because OB = OD,$$OC = OE,$
$\therefore \triangle BOD$和$\triangle COE$都是等邊三角形,
$\therefore \angle BOD = \angle COE = 60^\circ。$
$\because \angle BOC = 180^\circ$(平角定義),
$\therefore \angle DOE = \angle BOC - \angle BOD - \angle COE = 180^\circ - 60^\circ - 60^\circ = 60^\circ。$
$\therefore \angle BOD = \angle DOE = 60^\circ,$
$\therefore \widehat{BD} = \widehat{DE}$(在同圓或等圓中,相等的圓心角所對的弧相等)。