亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第35頁

第35頁

信息發(fā)布者:
解:在$\odot O$中,
$\because AB = AC,$
$\therefore \angle B = \angle C。$
$\because \angle A = 40^{\circ},$且$\angle A + \angle B + \angle C = 180^{\circ},$
$\therefore \angle B = \frac{180^{\circ} - \angle A}{2} = \frac{180^{\circ} - 40^{\circ}}{2} = 70^{\circ}。$
AC與BD相等.理由如下:
因為AB=DC,
所以$\widehat{AB}=\widehat{CD},$
即有$\widehat{AB}+\widehat{BC}=\widehat{BC}+\widehat{CD},$
即$\widehat{AC}=\widehat{BD},$
所以AC=BD.
$\widehat{BD}$與$\widehat{DE}$相等,理由如下:
連接$OD$、$OE,$如圖所示。
$\because \triangle ABC$是等邊三角形,
$\therefore \angle B = \angle C = 60^\circ。$
又$\because OB = OD,$$OC = OE,$
$\therefore \triangle BOD$和$\triangle COE$都是等邊三角形,
$\therefore \angle BOD = \angle COE = 60^\circ。$
$\because \angle BOC = 180^\circ$(平角定義),
$\therefore \angle DOE = \angle BOC - \angle BOD - \angle COE = 180^\circ - 60^\circ - 60^\circ = 60^\circ。$
$\therefore \angle BOD = \angle DOE = 60^\circ,$
$\therefore \widehat{BD} = \widehat{DE}$(在同圓或等圓中,相等的圓心角所對的弧相等)。
解: B D 與 D E 相等, 理由如下
連接 O D 、 O E, 如圖
$\because \triangle A B C $是等邊三角形
$\therefore \angle B=\angle C=60^{\circ}$
又$\because O B=O D,$ O C=O E
$\therefore \triangle B O D $和$ \triangle C O E $都是等邊三角形
$\therefore \angle B O D=\angle C O E=60^{\circ}$
$\therefore \angle D O E=60^{\circ}$
$\therefore \angle B O D=\angle C O E=\angle D O E=60^{\circ}$
$\therefore \widehat{B D}=\widehat{D E}$