(1)解:因?yàn)榉匠?x^{2}+(2m - 1)x + m^{2}=0$有兩個(gè)實(shí)數(shù)根,所以判別式$\Delta=(2m - 1)^{2}-4\times1\times m^{2}\geq0。$
展開(kāi)可得:$4m^{2}-4m + 1-4m^{2}\geq0,$
化簡(jiǎn)得:$-4m + 1\geq0,$
移項(xiàng)得:$-4m\geq - 1,$
兩邊同時(shí)除以$-4$(不等號(hào)變向):$m\leq\frac{1}{4}。$
(2)解:當(dāng)$x_{1}^{2}-x_{2}^{2}=0$時(shí),即$(x_{1}+x_{2})(x_{1}-x_{2})=0,$所以$x_{1}+x_{2}=0$或$x_{1}-x_{2}=0。$
當(dāng)$x_{1}+x_{2}=0$時(shí),根據(jù)一元二次方程根與系數(shù)的關(guān)系,$x_{1}+x_{2}=-(2m - 1),$所以$-(2m - 1)=0,$解得$m=\frac{1}{2}。$又因?yàn)橛?/div>
(1)知$m\leq\frac{1}{4},$所以$m = \frac{1}{2}$不成立,故此時(shí)$m$無(wú)解。
當(dāng)$x_{1}-x_{2}=0$時(shí),$x_{1}=x_{2},$方程有兩個(gè)相等的實(shí)數(shù)根,所以判別式$\Delta=(2m - 1)^{2}-4\times1\times m^{2}=0,$即$-4m + 1=0,$解得$m=\frac{1}{4}。$
綜上所述,當(dāng)$x_{1}^{2}-x_{2}^{2}=0$時(shí),$m=\frac{1}{4}。$