亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第16頁(yè)

第16頁(yè)

信息發(fā)布者:
-3
2
1
D
C
解:對(duì)于方程$x^2 - 2x - 3 = 0,$$x_1 + x_2 = 2,$$x_1 \cdot x_2 = -3$
解:方程$3x^2 = x(x + 1)$可化為$2x^2 - x = 0,$$x_1 + x_2 = \frac{1}{2},$$x_1 \cdot x_2 = 0$
解:設(shè)方程$x^2 + mx - 1 = 0$的兩根分別為$a,$$b,$根據(jù)韋達(dá)定理可得:
$a + b = -m,$$ab = -1。$
因?yàn)榉匠?x^2 + mx - 1 = 0$的兩根是方程$x^2 + x + n = 0$兩根的相反數(shù),所以方程$x^2 + x + n = 0$的兩根為$-a,$$-b。$
對(duì)于方程$x^2 + x + n = 0,$由韋達(dá)定理可知:
$-a + (-b) = -1,$$(-a) \cdot (-b) = n。$
化簡(jiǎn)得:
$a + b = 1,$$ab = n。$
結(jié)合前面的結(jié)果$a + b = -m$和$ab = -1,$可得:
$-m = 1,$即$m = -1;$
$n = ab = -1。$
綜上,$m = -1,$$n = -1。$
(1)解:因?yàn)榉匠?x^{2}+(2m - 1)x + m^{2}=0$有兩個(gè)實(shí)數(shù)根,所以判別式$\Delta=(2m - 1)^{2}-4\times1\times m^{2}\geq0。$
展開(kāi)可得:$4m^{2}-4m + 1-4m^{2}\geq0,$
化簡(jiǎn)得:$-4m + 1\geq0,$
移項(xiàng)得:$-4m\geq - 1,$
兩邊同時(shí)除以$-4$(不等號(hào)變向):$m\leq\frac{1}{4}。$
(2)解:當(dāng)$x_{1}^{2}-x_{2}^{2}=0$時(shí),即$(x_{1}+x_{2})(x_{1}-x_{2})=0,$所以$x_{1}+x_{2}=0$或$x_{1}-x_{2}=0。$
當(dāng)$x_{1}+x_{2}=0$時(shí),根據(jù)一元二次方程根與系數(shù)的關(guān)系,$x_{1}+x_{2}=-(2m - 1),$所以$-(2m - 1)=0,$解得$m=\frac{1}{2}。$又因?yàn)橛?/div>
(1)知$m\leq\frac{1}{4},$所以$m = \frac{1}{2}$不成立,故此時(shí)$m$無(wú)解。
當(dāng)$x_{1}-x_{2}=0$時(shí),$x_{1}=x_{2},$方程有兩個(gè)相等的實(shí)數(shù)根,所以判別式$\Delta=(2m - 1)^{2}-4\times1\times m^{2}=0,$即$-4m + 1=0,$解得$m=\frac{1}{4}。$
綜上所述,當(dāng)$x_{1}^{2}-x_{2}^{2}=0$時(shí),$m=\frac{1}{4}。$
解:因?yàn)?x_{1}$、$x_{2}$是方程$x^{2}+6x + 3=0$的兩個(gè)實(shí)數(shù)根,所以$x_{1}+x_{2}=-6,$$x_{1}\cdot x_{2}=3。$
原式$=x_{1}\cdot x_{2}+x_{1}+x_{2}+1=3+(-6)+1=-2$
解:因?yàn)?x_{1}$、$x_{2}$是方程$x^{2}+6x + 3=0$的兩個(gè)實(shí)數(shù)根,所以$x_{1}+x_{2}=-6,$$x_{1}\cdot x_{2}=3。$
原式$=\frac{x_{2}^{2}+x_{1}^{2}}{x_{1}\cdot x_{2}}=\frac{(x_{1}+x_{2})^{2}-2x_{1}\cdot x_{2}}{x_{1}\cdot x_{2}}=\frac{(-6)^{2}-2\times3}{3}=\frac{36 - 6}{3}=\frac{30}{3}=10$