解:設(shè)方程$x^2 - 21x + 21a - 1 = 0$的正整數(shù)根為$m,$則:
$m^2 - 21m + 21a - 1 = 0$
整理得:$21a = -m^2 + 21m + 1$
∴$a = \frac{-m^2 + 21m + 1}{21} = -\frac{m^2}{21} + m + \frac{1}{21}$
∵$a$為正整數(shù),$m$為正整數(shù)
∴$-m^2 + 21m + 1$必須能被$21$整除,即$m^2 \equiv 1 \pmod{21}$
又
∵方程有實(shí)根,判別式$\Delta = (-21)^2 - 4(21a - 1) \geq 0$
$\begin{aligned}441 - 84a + 4 &\geq 0 \\445 - 84a &\geq 0 \\84a &\leq 445 \\a &\leq \frac{445}{84} \approx 5.3\end{aligned}$
∴$a$為正整數(shù),$a \leq 5$
分別檢驗(yàn)$m$為正整數(shù)且$m < 21$(由韋達(dá)定理,兩根之和為$21,$正整數(shù)根$m$滿(mǎn)足$1 \leq m \leq 20$):
當(dāng)$m = 1$時(shí):$a = \frac{-1 + 21 + 1}{21} = \frac{21}{21} = 1$(正整數(shù),符合)
當(dāng)$m = 20$時(shí)(另一根為$1$):$a = \frac{-400 + 420 + 1}{21} = \frac{21}{21} = 1$
當(dāng)$m = 8$時(shí):$m^2 = 64,$$64 \div 21 = 3\cdots1,$即$64 \equiv 1 \pmod{21}$
$a = \frac{-64 + 168 + 1}{21} = \frac{105}{21} = 5$(正整數(shù),符合)
當(dāng)$m = 13$時(shí)(另一根為$8$):$a = \frac{-169 + 273 + 1}{21} = \frac{105}{21} = 5$
綜上,正整數(shù)$a$的值為$1$或$5$