(1)證明:$2x^{2}+4x+3=2(x^{2}+2x)+3=2(x^{2}+2x+1-1)+3=2(x+1)^{2}-2+3=2(x+1)^{2}+1,$
$\because (x+1)^{2}\geq0,$
$\therefore 2(x+1)^{2}\geq0,$
$\therefore 2(x+1)^{2}+1\geq1>0,$
即對于任意實數(shù)$x,$$2x^{2}+4x+3>0$恒成立.
(2)證明:$(3x^{2}-5x-1)-(2x^{2}-4x-7)=3x^{2}-5x-1-2x^{2}+4x+7=x^{2}-x+6,$
$x^{2}-x+6=x^{2}-x+\frac{1}{4}-\frac{1}{4}+6=(x-\frac{1}{2})^{2}+\frac{23}{4},$
$\because (x-\frac{1}{2})^{2}\geq0,$
$\therefore (x-\frac{1}{2})^{2}+\frac{23}{4}\geq\frac{23}{4}>0,$
即$(3x^{2}-5x-1)-(2x^{2}-4x-7)>0,$
$\therefore$對于任意實數(shù)$x,$代數(shù)式$3x^{2}-5x-1$的值總大于代數(shù)式$2x^{2}-4x-7$的值.