亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

第8頁

信息發(fā)布者:
3或-1
D
解:原方程為 $-2x^{2}+4x+1=0,$移項得 $-2x^{2}+4x=-1,$兩邊同時除以$-2$得 $x^{2}-2x=\frac{1}{2},$配方得 $x^{2}-2x+1=\frac{1}{2}+1,$即 $(x-1)^{2}=\frac{3}{2},$開方得 $x-1=\pm\frac{\sqrt{6}}{2},$解得 $x_{1}=1+\frac{\sqrt{6}}{2},$$x_{2}=1-\frac{\sqrt{6}}{2}。$
解:原方程為 $3x^{2}-5x=2,$移項得 $3x^{2}-5x-2=0,$兩邊同時除以$3$得 $x^{2}-\frac{5}{3}x=\frac{2}{3},$配方得 $x^{2}-\frac{5}{3}x+\frac{25}{36}=\frac{2}{3}+\frac{25}{36},$即 $(x-\frac{5}{6})^{2}=\frac{49}{36},$開方得 $x-\frac{5}{6}=\pm\frac{7}{6},$解得 $x_{1}=2,$$x_{2}=-\frac{1}{3}。$
解:原方程為 $9y^{2}-16y-4=0,$移項得 $9y^{2}-16y=4,$兩邊同時除以$9$得 $y^{2}-\frac{16}{9}y=\frac{4}{9},$配方得 $y^{2}-\frac{16}{9}y+\frac{64}{81}=\frac{4}{9}+\frac{64}{81},$即 $(y-\frac{8}{9})^{2}=\frac{100}{81},$開方得 $y-\frac{8}{9}=\pm\frac{10}{9},$解得 $y_{1}=2,$$y_{2}=-\frac{2}{9}。$
解:原方程為 $\frac{1}{2}t^{2}+3t=1,$移項得 $\frac{1}{2}t^{2}+3t-1=0,$兩邊同時乘以$2$得 $t^{2}+6t=2,$配方得 $t^{2}+6t+9=2+9,$即 $(t+3)^{2}=11,$開方得 $t+3=\pm\sqrt{11},$解得 $t_{1}=-3+\sqrt{11},$$t_{2}=-3-\sqrt{11}。$
解:$x(2x + 3) = 4x + 6$
移項得$x(2x + 3) - 4x - 6 = 0$
變形得$x(2x + 3) - 2(2x + 3) = 0$
因式分解得$(2x + 3)(x - 2) = 0$
則$2x + 3 = 0$或$x - 2 = 0$
解得$x_1 = -\frac{3}{2},$$x_2 = 2$
解:$x^2 + 2mx = n$
配方得$x^2 + 2mx + m^2 = n + m^2$
即$(x + m)^2 = n + m^2$
因為$n + m^2 \geq 0$
開方得$x + m = \pm\sqrt{n + m^2}$
解得$x_1 = -m + \sqrt{n + m^2},$$x_2 = -m - \sqrt{n + m^2}$
(1)證明:$2x^{2}+4x+3=2(x^{2}+2x)+3=2(x^{2}+2x+1-1)+3=2(x+1)^{2}-2+3=2(x+1)^{2}+1,$
$\because (x+1)^{2}\geq0,$
$\therefore 2(x+1)^{2}\geq0,$
$\therefore 2(x+1)^{2}+1\geq1>0,$
即對于任意實數(shù)$x,$$2x^{2}+4x+3>0$恒成立.
(2)證明:$(3x^{2}-5x-1)-(2x^{2}-4x-7)=3x^{2}-5x-1-2x^{2}+4x+7=x^{2}-x+6,$
$x^{2}-x+6=x^{2}-x+\frac{1}{4}-\frac{1}{4}+6=(x-\frac{1}{2})^{2}+\frac{23}{4},$
$\because (x-\frac{1}{2})^{2}\geq0,$
$\therefore (x-\frac{1}{2})^{2}+\frac{23}{4}\geq\frac{23}{4}>0,$
即$(3x^{2}-5x-1)-(2x^{2}-4x-7)>0,$
$\therefore$對于任意實數(shù)$x,$代數(shù)式$3x^{2}-5x-1$的值總大于代數(shù)式$2x^{2}-4x-7$的值.
證明:
原式$=m^{2}-6mn + 9n^{2}+n^{2}-8n + 16 + 4$
$=(m - 3n)^{2}+(n - 4)^{2}+4,$
因為$(m - 3n)^{2}\geq0,$$(n - 4)^{2}\geq0,$
所以$(m - 3n)^{2}+(n - 4)^{2}+4\geq4,$
即對于任意實數(shù)$m$、$n,$代數(shù)式$m^{2}+10n^{2}-6mn-8n + 20$的值不小于$4。$
解:$2x^{2}-\frac{4}{3}x-2= 0$
兩邊同除以2:$x^{2}-\frac{2}{3}x-1=0$
移項:$x^{2}-\frac{2}{3}x=1$
配方:$x^{2}-\frac{2}{3}x+(\frac{1}{3})^{2}=1+(\frac{1}{3})^{2}$
即$(x-\frac{1}{3})^{2}=\frac{10}{9}$
D