亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第5頁(yè)

第5頁(yè)

信息發(fā)布者:
4
2
$\frac {9}{4}$
$\frac {3}{2}$
$\frac {9}{16}$
$\frac {3}{4}$
6
3
B
B
解:$x^{2}+2x+1=4$
$\ \ \ \ \ \ \ (x+1)^{2}=4$
$x_1=1,$$x_2=-3$
解:$x^{2}-3x+\frac{9}{4}=\frac{1}{4}$
$\ \ \ \ \ \ \ (x-\frac{3}{2})^{2}=\frac{1}{4}$
$x_{1}=1,$$x_{2}=2$
解:$(x+3)^{2}=0$
$\ \ \ \ \ \ \ x=-3$
解:$x^{2}+\frac{3}{4}x+\frac{9}{64}=1+\frac{9}{64}$
$\ \ \ \ \ \ \ (x+\frac{3}{8})^{2}=\frac{73}{64}$
$x_1=\frac{\sqrt{73}}{8}-\frac{3}{8},$$x_2=-\frac{\sqrt{73}}{8}-\frac{3}{8}$
解:$x^2 - x - 6 = 0$$(x - 3)(x + 2) = 0$$x - 3 = 0$或$x + 2 = 0$$x_1 = 3,$$x_2 = -2$
解:$x^2 + 4x + 5 = 0$$\Delta = 4^2 - 4×1×5 = 16 - 20 = -4 < 0$方程無(wú)實(shí)數(shù)根
解:$x^2 - 2x - 2 = 0$$x^2 - 2x = 2$$x^2 - 2x + 1 = 2 + 1$$(x - 1)^2 = 3$$x - 1 = ±\sqrt{3}$$x_1 = 1 + \sqrt{3},$$x_2 = 1 - \sqrt{3}$
解:$p^2 + 5p - 1 = 0$$p^2 + 5p = 1$$p^2 + 5p + (\frac{5}{2})^2 = 1 + (\frac{5}{2})^2$$(p + \frac{5}{2})^2 = \frac{29}{4}$$p + \frac{5}{2} = ±\frac{\sqrt{29}}{2}$$p_1 = \frac{-5 + \sqrt{29}}{2},$$p_2 = \frac{-5 - \sqrt{29}}{2}$
(1)解:$x^2 - x - 6 = 0$
$(x - 3)(x + 2) = 0$
$x - 3 = 0$或$x + 2 = 0$
$x_1 = 3$,$x_2 = -2$
(2)解:$x^2 + 4x + 5 = 0$
$\Delta = 4^2 - 4×1×5 = 16 - 20 = -4 < 0$
方程無(wú)實(shí)數(shù)根
(3)解:$x^2 - 2x - 2 = 0$
$x^2 - 2x = 2$
$x^2 - 2x + 1 = 2 + 1$
$(x - 1)^2 = 3$
$x - 1 = ±\sqrt{3}$
$x_1 = 1 + \sqrt{3}$,$x_2 = 1 - \sqrt{3}$
(4)解:$p^2 + 5p - 1 = 0$
$p^2 + 5p = 1$
$p^2 + 5p + (\frac{5}{2})^2 = 1 + (\frac{5}{2})^2$
$(p + \frac{5}{2})^2 = \frac{29}{4}$
$p + \frac{5}{2} = ±\frac{\sqrt{29}}{2}$
$p_1 = \frac{-5 + \sqrt{29}}{2}$,$p_2 = \frac{-5 - \sqrt{29}}{2}$