解:$1. (1)$
$對(duì)于一元二次方程x^{2}+14x + 33 = 0,根據(jù)求根公式x=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a}(這里a = 1,b = 14,c = 33),則x=\frac{-14\pm\sqrt{14^{2}-4×1×33}}{2×1}=\frac{-14\pm\sqrt{196 - 132}}{2}=\frac{-14\pm\sqrt{64}}{2}=\frac{-14\pm8}{2}。$
$解得x_1=\frac{-14 - 8}{2}=-11,x_2=\frac{-14 + 8}{2}=-3。$
$因?yàn)閤_1=-11,x_2=-3,x_1\lt x_2\lt0,且\frac{x_1}{x_2}=\frac{-11}{-3}=\frac{11}{3}\approx3.7,3\lt\frac{11}{3}\lt4,所以一元二次方程x^{2}+14x + 33 = 0是“限根方程”。$
$2. (2)$
$解:$
$對(duì)于一元二次方程x^{2}+(k + 9)x + k^{2}+8 = 0,由韋達(dá)定理得x_1 + x_2=-(k + 9),x_1x_2=k^{2}+8。$
$已知11x_1+11x_2+x_1x_2=-121,將x_1 + x_2=-(k + 9),x_1x_2=k^{2}+8代入可得:11×[-(k + 9)]+(k^{2}+8)=-121。$
$展開式子得-11k-99 + k^{2}+8=-121。$
$移項(xiàng)化為一元二次方程的一般形式:k^{2}-11k-99 + 8 + 121 = 0,即k^{2}-11k + 30 = 0。$
$因式分解得(k - 5)(k - 6)=0,解得k_1 = 5,k_2 = 6。$
$當(dāng)k = 5時(shí),方程為x^{2}+14x+33 = 0,x_1=-11,x_2=-3,\frac{x_1}{x_2}=\frac{-11}{-3}=\frac{11}{3},3\lt\frac{11}{3}\lt4,符合“限根方程”定義。$
$當(dāng)k = 6時(shí),方程為x^{2}+15x+44 = 0,x=\frac{-15\pm\sqrt{15^{2}-4×44}}{2}=\frac{-15\pm\sqrt{225 - 176}}{2}=\frac{-15\pm7}{2},解得x_1=-11,x_2=-4,\frac{x_1}{x_2}=\frac{-11}{-4}=\frac{11}{4}=2.75,2.75\lt3,不符合“限根方程”定義。$