【答案】:
C
【解析】:
①解方程$x^2 - x - 2 = 0$,$(x - 2)(x + 1)=0$,根為$x_1=2$,$x_2=-1$,$2$不是$-1$的$2$倍,$-1$不是$2$的$2$倍,不是倍根方程,①錯誤;
②方程$(x - 2)(mx + n)=0$的根為$x_1=2$,$x_2=-\frac{n}{m}$。若$2 = 2×(-\frac{n}{m})$,則$-\frac{n}{m}=1$,$n=-m$,$4m^2 + 5mn + n^2=4m^2 - 5m^2 + m^2=0$;若$-\frac{n}{m}=2×2=4$,則$n=-4m$,$4m^2 + 5mn + n^2=4m^2 - 20m^2 + 16m^2=0$,②正確;
③方程$px^2 + 3x + q = 0$,兩根$x_1$,$x_2$,$x_1x_2=\frac{q}{p}=2$($pq=2$),$x_1 + x_2=-\frac{3}{p}$。設$x_2=2x_1$,則$x_1\cdot2x_1=2$,$x_1^2=1$,$x_1=\pm1$。若$x_1=1$,則$x_2=2$,$1 + 2=3=-\frac{3}{p}$,$p=-1$,$q=-2$,方程$-x^2 + 3x - 2 = 0$,根為$1$和$2$;若$x_1=-1$,則$x_2=-2$,$-1 + (-2)=-3=-\frac{3}{p}$,$p=1$,$q=2$,方程$x^2 + 3x + 2 = 0$,根為$-1$和$-2$,是倍根方程,③正確;
④設方程$ax^2 + bx + c = 0$兩根為$t$,$2t$,則$t + 2t=-\frac{a}$,$t=-\frac{3a}$,$t\cdot2t=\frac{c}{a}$,$2t^2=\frac{c}{a}$,$2(-\frac{3a})^2=\frac{c}{a}$,$\frac{2b^2}{9a^2}=\frac{c}{a}$,$2b^2=9ac$,④正確。
正確個數(shù)為$3$個,答案選C。