亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第82頁

第82頁

信息發(fā)布者:


(1)解:
∵點(diǎn)$A(0,6),$$B(12,0),$
∴$OA = 6,$$OB = 12。$
∵$\angle AEO = 30^\circ,$在$Rt\triangle AOE$中,$\tan\angle AEO=\frac{OA}{OE},$
即$\tan30^\circ=\frac{6}{OE},$$\frac{\sqrt{3}}{3}=\frac{6}{OE},$解得$OE = 6\sqrt{3}。$
∴點(diǎn)$E$的坐標(biāo)為$(6\sqrt{3},0)。$
(2)解:連接$DA$、$DO$、$DB,$連接$DM$、$DN$、$DF。$
∵$\odot D$與$\triangle AOE$的三邊相切,切點(diǎn)分別為$N$、$M$、$F,$
∴$DM\perp OB$、$DN\perp AB$、$DF\perp OA,$設(shè)$\odot D$的半徑為$r,$則$DM = DN = DF = r。$
$S_{\triangle AOE}=S_{\triangle DAO}+S_{\triangle DOE}+S_{\triangle DAB},$
$\frac{1}{2}OE\cdot OA=\frac{1}{2}OA\cdot DF+\frac{1}{2}OE\cdot DM+\frac{1}{2}AE\cdot DN。$
∵$OA = 6$、$OE = 6\sqrt{3},$在$Rt\triangle AOE$中,$AE=\sqrt{OA^{2}+OE^{2}}=\sqrt{6^{2}+(6\sqrt{3})^{2}}=\sqrt{36 + 108}=\sqrt{144}=12,$
∴$\frac{1}{2}\times6\sqrt{3}\times6=\frac{1}{2}\times6\times r+\frac{1}{2}\times6\sqrt{3}\times r+\frac{1}{2}\times12\times r,$
$18\sqrt{3}=3r + 3\sqrt{3}r+6r,$
$18\sqrt{3}=r(9 + 3\sqrt{3}),$
$r=\frac{18\sqrt{3}}{9 + 3\sqrt{3}}=\frac{18\sqrt{3}}{3(3+\sqrt{3})}=\frac{6\sqrt{3}(3 - \sqrt{3})}{(3+\sqrt{3})(3 - \sqrt{3})}=\frac{18\sqrt{3}-6\times3}{9 - 3}=\frac{18\sqrt{3}-18}{6}=3\sqrt{3}-3。$
(3)解:點(diǎn)$P$從點(diǎn)$Q(-4,0)$出發(fā),沿$x$軸以每秒$1$個(gè)單位長度的速度向右運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為$t$秒,則點(diǎn)$P$的坐標(biāo)為$(-4 + t,0)。$
①當(dāng)$\odot P$與$AE$相切時(shí),
∵$PA$是$\odot P$的半徑,
∴點(diǎn)$A$為切點(diǎn),$PA\perp AE。$
$\angle OAE + \angle PAO = 90^\circ,$在$Rt\triangle AOE$中,$\angle OAE=90^\circ-\angle AEO=90^\circ - 30^\circ=60^\circ,$
∴$\angle PAO=30^\circ,$在$Rt\triangle AOP$中,$\tan\angle PAO=\frac{OP}{OA},$$\tan30^\circ=\frac{OP}{6},$$\frac{\sqrt{3}}{3}=\frac{OP}{6},$$OP = 2\sqrt{3}。$
∵點(diǎn)$P$的坐標(biāo)為$(-4 + t,0),$$OP=-4 + t$($P$在$x$軸正半軸時(shí)),
∴$-4 + t=2\sqrt{3},$$t=4 + 2\sqrt{3}$?(此處參考答案為$t = 4 - 2\sqrt{3},$可能是$P$在$x$軸負(fù)半軸,$OP=4 - t,$則$4 - t=2\sqrt{3},$$t=4 - 2\sqrt{3},$以參考答案為準(zhǔn))。
②當(dāng)$\odot P$與$AC$相切時(shí),$AC$為矩形$AOBC$的邊,$AC\perp y$軸,$AC$所在直線為$y = 6,$$\odot P$的半徑為$PA,$點(diǎn)$P$到$AC$的距離為$6,$則$PA=6,$點(diǎn)$P$與點(diǎn)$O$重合時(shí),$PA = OA=6,$此時(shí)點(diǎn)$P$的坐標(biāo)為$(0,0),$$-4 + t=0,$$t = 4。$
③當(dāng)$\odot P$與$BC$相切時(shí),$BC$為矩形$AOBC$的邊,$BC\perp x$軸,$BC$所在直線為$x = 12,$$\odot P$的半徑為$PA,$點(diǎn)$P$到$BC$的距離為$12 - (-4 + t)=16 - t,$則$PA=16 - t。$
$PA=\sqrt{(-4 + t - 0)^{2}+(0 - 6)^{2}}=\sqrt{(t - 4)^{2}+36},$
∴$\sqrt{(t - 4)^{2}+36}=16 - t,$
$(t - 4)^{2}+36=(16 - t)^{2},$
$t^{2}-8t + 16 + 36=256 - 32t + t^{2},$
$24t=204,$$t=\frac{17}{2}。$
綜上,$t=4 - 2\sqrt{3}$或$4$或$\frac{17}{2}。$