亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第17頁

第17頁

信息發(fā)布者:
解:$(3 - t)^2 + t^2 = 9$
$9 - 6t + t^2 + t^2 - 9 = 0$
$2t^2 - 6t = 0$
$t(2t - 6) = 0$
$t = 0$或$2t - 6 = 0$
$t_1 = 0,$$t_2 = 3$
解:$4(x + 1)^2 - 12(x + 1) + 9 = 0$
$[2(x + 1) - 3]^2 = 0$
$2(x + 1) - 3 = 0$
$2x + 2 - 3 = 0$
$2x - 1 = 0$
$x = \frac{1}{2}$
$x_1 = x_2 = \frac{1}{2}$
解:$(x - 2)(x - 3) = 0$
$x - 2 = 0$或$x - 3 = 0$
$x_1 = 2,$$x_2 = 3$
解:$x^2 + 4x - 192 = 0$
$(x + 16)(x - 12) = 0$
$x + 16 = 0$或$x - 12 = 0$
$x_1 = -16,$$x_2 = 12$
解:$x^2 + 3x - 18 = 10$
$x^2 + 3x - 28 = 0$
$(x + 7)(x - 4) = 0$
$x + 7 = 0$或$x - 4 = 0$
$x_1 = -7,$$x_2 = 4$
解:$3(x - 1)^2 - 2(x - 1) = 0$
$(x - 1)[3(x - 1) - 2] = 0$
$(x - 1)(3x - 5) = 0$
$x - 1 = 0$或$3x - 5 = 0$
$x_1 = 1,$$x_2 = \frac{5}{3}$
解:$a = 1,$$b = -\frac{7}{2},$$c = -4$
所以$b^2 - 4ac$
$= (-\frac{7}{2})^2 - 4×1×(-4)$
$= \frac{113}{4}$
$x = \frac{\frac{7}{2} ± \sqrt{\frac{113}{4}}}{2}$
$x_1 = \frac{7 + \sqrt{113}}{4},$$x_2 = \frac{7 - \sqrt{113}}{4}$
解:$(2x + 1 - 2)(2x + 1 - 3) = 0$
$(2x - 1)(2x - 2) = 0$
$2x - 1 = 0$或$2x - 2 = 0$
$x_1 = \frac{1}{2},$$x_2 = 1$
-2或3
$解:原方程可化為$
$(|x|-1)(|x|-2)=0 $
$∴|x|-1=0或|x|-2=0$
$∴x_1=1,x_2=-1,$
$x_3=2,x_4=-2$
【答案】:
-2或3

【解析】:
因為$y \neq 0$,方程兩邊同時除以$y^{2}$,得$\left(\frac{x}{y}\right)^{2}-\frac{x}{y}-6 = 0$。
設(shè)$t=\frac{x}{y}$,則方程化為$t^{2}-t - 6=0$。
因式分解,得$(t - 3)(t + 2)=0$。
所以$t - 3=0$或$t + 2=0$,解得$t = 3$或$t=-2$。
即$\frac{x}{y}=3$或$-2$。
3或-2.
【答案】:
解:原方程可化為(|x|-1)(|x|-2)=0
∴|x|-1=0或|x|-2=0
∴$x_1=1,$$x_2=-1,$$x_3=2,$$x_4=-2$

【解析】:
原方程可化為$(|x| - 1)(|x| - 2) = 0$,
$\therefore |x| - 1 = 0$或$|x| - 2 = 0$,
$\therefore |x| = 1$或$|x| = 2$,
$\therefore x = 1$或$x = -1$或$x = 2$或$x = -2$,
$\therefore x_{1}=1$,$x_{2}=-1$,$x_{3}=2$,$x_{4}=-2$。