(1)因?yàn)榉匠?(m - 1)x^2 - 2mx + m + 1 = 0$是一元二次方程,所以$m - 1 \neq 0,$即$m \neq 1。$
判別式$\Delta = (-2m)^2 - 4(m - 1)(m + 1) = 4m^2 - 4(m^2 - 1) = 4m^2 - 4m^2 + 4 = 4。$
由求根公式可得:$x = \frac{2m \pm \sqrt{4}}{2(m - 1)} = \frac{2m \pm 2}{2(m - 1)} = \frac{m \pm 1}{m - 1}。$
所以方程的根為$x_1 = \frac{m + 1}{m - 1},$$x_2 = \frac{m - 1}{m - 1} = 1。$
(2)由(1)可知方程的兩個(gè)根為$x_1 = \frac{m + 1}{m - 1}$和$x_2 = 1。$
因?yàn)?x_2 = 1$是正整數(shù),所以要使兩個(gè)根都是正整數(shù),只需$x_1 = \frac{m + 1}{m - 1}$為正整數(shù)。
$x_1 = \frac{m + 1}{m - 1} = \frac{(m - 1) + 2}{m - 1} = 1 + \frac{2}{m - 1}。$
因?yàn)?x_1$是正整數(shù),所以$\frac{2}{m - 1}$必須是正整數(shù),那么$m - 1$是$2$的正因數(shù)。
$2$的正因數(shù)有$1$和$2,$所以$m - 1 = 1$或$m - 1 = 2。$
當(dāng)$m - 1 = 1$時(shí),$m = 2;$當(dāng)$m - 1 = 2$時(shí),$m = 3。$
綜上,當(dāng)$m = 2$或$m = 3$時(shí),此方程的兩個(gè)根都是正整數(shù)。