$解:(1) 根據(jù)題意,得$
$慢車(chē)速度為\frac{8}{12}=\frac{2}{3}(km/min),$
$快車(chē)速度為\frac{16}{12}=\frac{4}{3}(km/min),$
$它們第一次??康臅r(shí)長(zhǎng)為$
$\frac{72-2\times 24}{3}=8(min)$
$(2) 由題意,得當(dāng)20\leqslant t\leqslant 32時(shí),$
$慢車(chē)和快車(chē)第一次相遇,$
$分別設(shè)慢車(chē)和快車(chē)的函數(shù)表達(dá)式為s=kt+B(k\neq 0), s=k_{1}t+B_{1}(k_{1}\neq 0),$
$由(1)可得慢車(chē)對(duì)應(yīng)的函數(shù)圖象經(jīng)過(guò)(20,8),(32,16),$
$快車(chē)對(duì)應(yīng)的函數(shù)圖象經(jīng)過(guò)(20,16), (32,0),$
$分別代入函數(shù)表達(dá)式后,可得$
$\left\{\begin{array}{l} 8=20k+b,\\ 16=32k+b,\end{array}\right. \left\{\begin{array}{l} 16=20k_{1}+b_{1},\\ 0=32k_{1}+b_{1},\end{array}\right. $
$解得\left\{\begin{array}{l} k=\frac{2}{3},\\ b=-\frac{16}{3},\end{array}\right. \left\{\begin{array}{l} k_{1}=-\frac{4}{3},\\ b_{1}=\frac{128}{3}.\end{array}\right.$
$慢車(chē)離 A 站的路程 s 關(guān)于 t 的函數(shù)表達(dá)式為$
$s=\frac{2}{3}t-\frac{16}{3},$
$快車(chē)離 A 站的路程 s 關(guān)于 t 的函數(shù)表達(dá)式為$
$s=-\frac{4}{3}t+\frac{128}{3},$
$聯(lián)立兩式\left\{\begin{array}{l} s=\frac{2}{3}t-\frac{16}{3},\\ s=-\frac{4}{3}t+\frac{128}{3},\end{array}\right. $
$解得\left\{\begin{array}{l} t=24,\\ s=\frac{32}{3},\end{array}\right.$
$即第一次相遇時(shí)與 A 站的距離為$
$\frac{32}{3}km $
$(3) 由(2),得 t_{1}=12+8+4=24 ,$
$由題意可得函數(shù)圖象關(guān)于過(guò)點(diǎn)(36,0)且垂直于橫軸的直線(xiàn)對(duì)稱(chēng),$
$P_{1},P_{2}是一組對(duì)稱(chēng)點(diǎn),$
$所以 t_{2}-36=36-t_{1},$
$解得t_{2}=48,t_{2}-t_{1}=24.$
$所以第一次相遇后,經(jīng)過(guò) 24 min 后兩車(chē)再次相遇 $