亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第132頁(yè)

第132頁(yè)

信息發(fā)布者:
(1)因?yàn)?(n - 3)^{2}+\sqrt{3m - 12}=0,$一個(gè)數(shù)的平方是非負(fù)數(shù),一個(gè)數(shù)的算術(shù)平方根也是非負(fù)數(shù),要使兩個(gè)非負(fù)數(shù)的和為$0,$則這兩個(gè)數(shù)必須都為$0,$所以$n - 3 = 0,$$3m - 12 = 0,$解得$n = 3,$$m = 4,$因此點(diǎn)$A$的坐標(biāo)是$(0,4),$點(diǎn)$C$的坐標(biāo)是$(3,0)。$
(2)因?yàn)辄c(diǎn)$B$的坐標(biāo)是$(-5,0),$所以$OB = 5。$
①當(dāng)$0\leqslant t<\frac{5}{2}$時(shí),點(diǎn)$P$在線(xiàn)段$OB$上,此時(shí)$OP = 5 - 2t,$$OA = 4,$$\triangle POA$的面積$S=\frac{1}{2}× OP× AO=\frac{1}{2}× (5 - 2t)× 4 = 10 - 4t;$
②當(dāng)$t=\frac{5}{2}$時(shí),點(diǎn)$P$和點(diǎn)$O$重合,此時(shí)$\triangle APO$不存在,即$S = 0;$
③當(dāng)$t>\frac{5}{2}$時(shí),點(diǎn)$P$在射線(xiàn)$OC$上,此時(shí)$OP = 2t - 5,$$OA = 4,$$\triangle POA$的面積$S=\frac{1}{2}× OP× AO=\frac{1}{2}× (2t - 5)× 4 = 4t - 10。$
綜上,$S=\begin{cases}10 - 4t(0\leqslant t<\frac{5}{2}) \\ 0(t=\frac{5}{2}) \\ 4t - 10(t>\frac{5}{2})\end{cases}。$
(3)存在。分三種情況:
①$\angle PAC$為頂角時(shí),即$AP = AC,$因?yàn)?A(0,4),$$C(3,0),$所以$AO$為$\triangle PAC$的中垂線(xiàn),因此$PO = CO = 3,$點(diǎn)$P$的坐標(biāo)為$(-3,0),$$t=\frac{BP}{2}=\frac{|-5 - (-3)|}{2}=\frac{2}{2}=1;$
②$\angle ACP$為頂角時(shí),$AC = CP,$根據(jù)勾股定理,$AC=\sqrt{OC^{2}+OA^{2}}=\sqrt{3^{2}+4^{2}} = 5,$所以$CP = 5,$因?yàn)辄c(diǎn)$P$在線(xiàn)段$BO$上,所以$PO = OC - CP = 3 - 5 = -2$(舍去)或$PO = CP - OC = 5 - 3 = 2,$點(diǎn)$P$的坐標(biāo)為$(-2,0),$$t=\frac{BP}{2}=\frac{|-5 - (-2)|}{2}=\frac{3}{2}=1.5;$
③$\angle APC$為頂角時(shí),$AP = PC,$設(shè)$PA = x,$則$PC = x,$在$Rt\triangle PAO$中,$PO = |x - 3|$(因?yàn)辄c(diǎn)$P$在$x$軸負(fù)半軸,$PC = x,$$OC = 3,$所以$PO = PC - OC = x - 3$),根據(jù)勾股定理可得$x^{2}=(x - 3)^{2}+4^{2},$解得$x=\frac{25}{6},$所以$PO=\frac{25}{6}-3=\frac{7}{6},$點(diǎn)$P$的坐標(biāo)為$(-\frac{7}{6},0),$$t=\frac{BP}{2}=\frac{|-5 - (-\frac{7}{6})|}{2}=\frac{|\frac{-30}{6}+\frac{7}{6}|}{2}=\frac{|\frac{-23}{6}|}{2}=\frac{23}{12}。$
綜上,點(diǎn)$P$的坐標(biāo)為$(-3,0),$$(-2,0),$$(-\frac{7}{6},0),$對(duì)應(yīng)的時(shí)間分別是$t = 1,$$1.5,$$\frac{23}{12}。$

$解:(1) 根據(jù)題意,得$
$慢車(chē)速度為\frac{8}{12}=\frac{2}{3}(km/min),$
$快車(chē)速度為\frac{16}{12}=\frac{4}{3}(km/min),$
$它們第一次??康臅r(shí)長(zhǎng)為$
$\frac{72-2\times 24}{3}=8(min)$
$(2) 由題意,得當(dāng)20\leqslant t\leqslant 32時(shí),$
$慢車(chē)和快車(chē)第一次相遇,$
$分別設(shè)慢車(chē)和快車(chē)的函數(shù)表達(dá)式為s=kt+B(k\neq 0), s=k_{1}t+B_{1}(k_{1}\neq 0),$
$由(1)可得慢車(chē)對(duì)應(yīng)的函數(shù)圖象經(jīng)過(guò)(20,8),(32,16),$
$快車(chē)對(duì)應(yīng)的函數(shù)圖象經(jīng)過(guò)(20,16), (32,0),$
$分別代入函數(shù)表達(dá)式后,可得$
$\left\{\begin{array}{l} 8=20k+b,\\ 16=32k+b,\end{array}\right. \left\{\begin{array}{l} 16=20k_{1}+b_{1},\\ 0=32k_{1}+b_{1},\end{array}\right. $
$解得\left\{\begin{array}{l} k=\frac{2}{3},\\ b=-\frac{16}{3},\end{array}\right. \left\{\begin{array}{l} k_{1}=-\frac{4}{3},\\ b_{1}=\frac{128}{3}.\end{array}\right.$
$慢車(chē)離 A 站的路程 s 關(guān)于 t 的函數(shù)表達(dá)式為$
$s=\frac{2}{3}t-\frac{16}{3},$
$快車(chē)離 A 站的路程 s 關(guān)于 t 的函數(shù)表達(dá)式為$
$s=-\frac{4}{3}t+\frac{128}{3},$
$聯(lián)立兩式\left\{\begin{array}{l} s=\frac{2}{3}t-\frac{16}{3},\\ s=-\frac{4}{3}t+\frac{128}{3},\end{array}\right. $
$解得\left\{\begin{array}{l} t=24,\\ s=\frac{32}{3},\end{array}\right.$
$即第一次相遇時(shí)與 A 站的距離為$
$\frac{32}{3}km $
$(3) 由(2),得 t_{1}=12+8+4=24 ,$
$由題意可得函數(shù)圖象關(guān)于過(guò)點(diǎn)(36,0)且垂直于橫軸的直線(xiàn)對(duì)稱(chēng),$
$P_{1},P_{2}是一組對(duì)稱(chēng)點(diǎn),$
$所以 t_{2}-36=36-t_{1},$
$解得t_{2}=48,t_{2}-t_{1}=24.$
$所以第一次相遇后,經(jīng)過(guò) 24 min 后兩車(chē)再次相遇 $