解:$(2)設軌道AB的長度為L米,$
$滑塊從點A到點B的滑動過程中,$
$l_1 = 9t,l_2 = L - (9t + 1),$
$則d = l_1 - l_2 = 9t - [L - (9t + 1)] = 18t + 1 - L。$
$因為當t = 4.5和t = 5.5時,d的值互為相反數,$
$所以18×4.5 + 1 - L + 18×5.5 + 1 - L = 0,解得L = 91。$
$滑塊從A到B用時\frac{91 - 1}{9} = 10秒,停頓2秒,$
$設返回速度為v m/s,返回用時\frac{91}{v}秒,$
$總用時10 + 2 + \frac{91}{v} = 27,解得v = 7。$
$返回過程中,t的范圍是12 \leq t \leq 27,l_1 = 91 - 7(t - 12),l_2 = 7(t - 12) - 1,$
$所以d = l_1 - l_2 = [91 - 7(t - 12)] - [7(t - 12) - 1] = -14t + 253$
$(3)當滑塊從左向右滑動時,d = 18t + 1 - 91 = 18t - 90,$
$令18t - 90 = 18,解得t = 6。$
$當滑塊從右向左滑動時,d = -14t + 253,令-14t + 253 = 18,$
$解得t = \frac{235}{14}(不符合題意,舍去)。綜上,t = 6$