$解:(1)\because BE\parallel CD,\therefore \angle BEC=\angle DCE.$
$\because \angle CEB=\angle CED,\therefore \angle CED=\angle DCE.$
$\therefore CD=DE=25,故道路CD的長(zhǎng)為25 m\ $
$(3)由(2)可得EB垂直平分AC,$
$根據(jù)兩點(diǎn)之間線段最短可得AD,EB的交點(diǎn)G到A,E,D,B的距離之和最小,$
$又GA=GC,則到四棟距離最小的點(diǎn)即為點(diǎn)G,如圖所示\ $
$(4)\because DC\parallel EB,EB\perp AC,\therefore AC\perp DC,\therefore \angle ADC=90^\circ.$
$\because點(diǎn)G在EB上,即AC的垂直平分線上,$
$\therefore GA=GC,\therefore \angle GAC=\angle GCA.$
$\because \angle GAC+\angle GCD=90^\circ,\angle GCA+\angle GDC=90^\circ,$
$\therefore \angle GCD=\angle GDC.\therefore GD=GC,\therefore GA=GD=GC,$
$\therefore CG+DG+EG+BG=AG+GD+EG+GB=AD+EB$
$=\sqrt{DC^2+AC^2}+EB=\sqrt{25^2+48^2}+50=(\sqrt{2929}+50)(\text{m}) $