解:原式?$=(\frac {1}{50}-1)×(\frac {1}{49}-1)×...×(\frac {1}{3}-1)×(\frac {1}{2}-1)$?
?$ =(\frac {1 - 50}{50})×(\frac {1 - 49}{49})×...×(\frac {1 - 3}{3})×(\frac {1 - 2}{2})$?
?$ =(-\frac {49}{50})×(-\frac {48}{49})×...×(-\frac {2}{3})×(-\frac {1}{2})$?
觀察可知,從?$\frac {1}{50}-1$?到?$\frac {1}{2}-1$?共有?$50 - 1=49$?個(gè)因式,
每個(gè)因式都是負(fù)數(shù),?$49$?個(gè)負(fù)數(shù)相乘結(jié)果為負(fù)。
分子分母依次約分,?$49$?與后一個(gè)分母?$49$?約掉,
?$48$?與后一個(gè)分母?$48$?約掉?$……2$?與后一個(gè)分母?$2$?約掉,
最后剩下分子?$1$?和分母?$50。$?
?$ $?所以結(jié)果為?$-\frac {1}{50}$?