解:由折疊性質(zhì)得$AG = AB = AD = 3,$$EG = BE = 1,$$FG = DF,$$\angle AGE = \angle AGF = 90^\circ,$故$E、G、F$共線。設(shè)$DF = x,$則$FG = x,$$FC = 3 - x,$$EC = 3 - 1 = 2,$$EF = 1 + x。$在$Rt\triangle EFC$中,$2^2 + (3 - x)^2 = (1 + x)^2,$解得$x = \frac{3}{2},$$EF = 1 + \frac{3}{2} = \frac{5}{2}。$答:$EF$的長(zhǎng)為$\frac{5}{2}。$