證明:∵?$AD,$??$A'D'$?分別為?$BC,$??$B'C'$?邊上的中線
∴?$CD=\frac {1}{2}BC,$??$C'D'=\frac {1}{2}B'C'$?
在?$Rt?ACD$?和?$Rt?A'C'D'$?中
?$ \begin {cases}{AC=A'C'}\\{AD=A'D'}\end {cases}$?
∴?$Rt?ACD≌Rt?A'C'D'(\mathrm {HL})$?
∴?$CD=C'D'$?
∴?$BC=2CD=2C'D'=B'C'$?
在?$Rt?ABC$?和?$Rt?A'B'C'$?中
?$ \begin {cases}{AC=A'C'}\\{∠C=∠C'=90°}\\{BC=B'C'}\end {cases}$?
∴?$Rt?ABC≌Rt?A'B'C'(S AS)$?