解:?$(1)$?∵?$AE$?是?$?ABC$?的中線,∴?$E$?是?$BC$?的中點(diǎn)
∴?$BE=CE=5$?
∴?$S_{\triangle AEC}=\frac 12×EC×AD=20$?
即?$\frac 12×5×AD=20,$?解得?$AD=8$?
?$(2)$?∵?$AD$?是高,∴?$S_{\triangle ABD}=\frac 12×BD×AD,$??$S_{\triangle ADC}=\frac 12×DC×AD$?
故?$S_{\triangle ABD}∶S_{\triangle ADC}=BD∶DC=2∶3$?
設(shè)?$BD=2k,$??$DC=3k,$?則?$BC=BD+DC=5k$?
∵?$AE$?是中線,∴?$BE=\frac {BC}2=\frac {5k}2=5,$?解得?$k=2$?
∴?$BC=10,$??$BD=4,$??$DC=6$?
又∵?$E$?是?$BC$?中點(diǎn),?$BE=5,$?∴?$DE=BE - BD=5 - 4=1$?