解:?$(2) $?從整體視角有六邊形?$BG EPH F $?是中心對稱圖形,?$O$?是它的對稱中心;
從角的角度有?$∠BFH = ∠PEG,$??$∠BGE=∠PHF,$??$∠FHE= 90°,$??$∠FEH = 30°$?等?$;$?
從邊的角度有?$FH//EG,$??$ FH = EG_{等};$?
從對角線的角度有?$BP = FE,$??$ FG = EH,$??$HE= \frac {\sqrt 3}2FE$?等?$;$?
從邊與對角線的關(guān)系的角度有?$2FH = BP,$??$EH =\sqrt 3FH$?等?$;$?
證明?$FH = EG,$?過程如下:
連接?$BE、$??$PF,$?如圖:
∵?$BP $?為圓?$O$?直徑
∴?$∠BEP=∠BFP= 90°$?
∵四邊形?$ABCP $?是平行四邊形,
∴?$BC//AP,$??$ BC = AP,$??$∠A=∠C$?
∴四邊形?$ BEPF $?是矩形,
∴?$BF= PE$?
∴?$BC-BF=AP-PE,$?即?$AE=CF$?
∵四邊形?$GEPB、$?四邊形?$FH PB$?是圓?$O$?的內(nèi)接四邊形
∴?$∠AGE=∠BPE,$??$∠CHF=∠FBP$?
∵?$BC// AP$?
∴?$∠BPE =∠FBP$?
∴?$∠AGE= ∠CHF$?
在?$△AG E$?和?$△CHF_{中}$?
?$\begin {cases}∠AGE=∠CHF\\AE= CF\\∠A=∠C\end {cases}$?
∴?$△AGE≌△CHF (\mathrm {ASA})$?
∴?$FH = EG$?